光学 精密工程, 2015, 23 (8): 2339, 网络出版: 2015-10-22   

用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标

Efficient target tracking by TLD based on binary normed gradients
作者单位
1 长春理工大学 电子信息工程学院, 长春,130022
2 中国科学院 长春光学精密机械与物理研究所, 长春,130000
3 东北师范大学 计算机科学与信息技术学院, 长春,130117
摘要
为提高复杂环境下TLD(Tracking-Learning-Detection)算法的跟踪精度和速度, 提出基于二值化规范梯度(BING)的高效TLD目标跟踪算法。在跟踪器中引入基于时空上下文的局部跟踪器失败预测方法和全局运动模型评估算法, 提高了跟踪器准确度和鲁棒性; 用BING算法取代滑动窗口搜索策略, 结合级联分类器实现目标检测, 减少了检测器的检测范围, 提高了检测的处理速度; 将训练样本权重整合到在线学习过程中, 改进级联分类器的分类准确度, 解决了目标漂移问题。对不同的图片序列实验结果表明: 本算法的跟踪正确率达85%, 帧率达19.79 frame/s。与原始TLD算法及其他主流跟踪算法相比较, 该算法在复杂环境下具有更高的鲁棒性、跟踪精度及处理速度。
Abstract
To improve the tracking precision and processing speed of the Tracking-Learning-Detection(TLD) algorithm under a complex environment, an efficient TLD target tracking algorithm based on BInary Normed Gradient(BING) algorithm was proposed. The local tracker failure predicting method based on spatial-temporal context and the global motion model estimation algorithm was introduced into the tracker to improve its precision and robustness. Then, the BING algorithm was used to replace a sliding window for searching the target to detect the candidate target by combining with a cascaded classifier, so that to reduce the search space and improve the processing speed of the detector. The sample weight was integrated into the online learning procedure to improve the accuracy of the classifier and to alleviate the drift to some extents. The experimental results on variant sequences demonstrate that the accurate rate and the frame rate of the improved TLD are 85% and 19.79 frame/s, respectively. Compared with original TLD and state-of-the-art tracking algorithm under the complex environment, the improved TLD has the superior performance on robustness, tracking precision and tracking speeds.
参考文献

[1] 郭敬明,何昕,魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1): 120-128.

    GUO J M,HE X,WEI ZH H. New mean shift tracking for color image based on online support vector machine[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1): 120-128. (in Chinese)

[2] WU Y, LIM J, YANG M H. Online object tracking: A benchmark [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, OR, Portland: IEEE, 2013: 2411-2418.

[3] ROSS D A, LIM J, LIN R S, et al.. Incremental learning for robust visual tracking [J]. International Journal of Computer Vision, 2008, 77(1-3): 125-141.

[4] 李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示, 2014, 29(4): 617-622.

    LI J Y,WANG Y J. Subspace based target tracking algorithm [J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4): 617-622. (in Chinese)

[5] LI H, SHEN C, SHI Q. Real-time visual tracking using compressive sensing[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2011: 1305-1312.

[6] SEVILLA-LARA L, LEARNED-MILLER E. Distribution fields for tracking[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI: IEEE, 2012: 1910-1917.

[7] GRABNER H, GRABNER M, BISCHOF H. Real-time tracking via on-line boosting[C]. Proceedings of British Machine Vision Conference, Edinburgh, Scotland: BMVA, 2006, 47-56.

[8] GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised on-line boosting for robust tracking[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany: Springer, 2008: 234-247.

[9] KALAL Z, MATAS J, MIKOLAJCZYK K. P-N learning: Bootstrapping binary classifiers by structural constraints[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York ,USA: IEEE, 2010: 49-56.

[10] STALDER S, GRABNER H, VAN G L. Beyond semi-supervised tracking: tracking should be as simple as detection, but not simpler than recognition [C]. Proceedings of International Conference on Computer Vision Workshop, Kyoto, Japan, 2009,1409-1416.

[11] 陈东成, 朱明, 高文,等. 在线加权多示例学习实时目标跟踪[J]. 光学 精密工程,2014,22(6): 1661-1667.

    CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014, 22(6): 1661-1667. (in Chinese)

[12] BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8): 1619-1632.

[13] ZHANGA K, SONG H. Real-time visual tracking via online weighted multiple instance learning [J]. Pattern Recognition, 2013, 46(1): 397-411.

[14] KALAL Z, MIKOLAJCZYK K,MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(7): 1409-1422.

[15] 周鑫, 钱秋朦, 叶永强,等. 改进后的TLD视频目标跟踪方法[J]. 中国图象图形学报, 2013,18(9): 1115-1123.

    ZHOU X, QIAN Q M,YE Y Q, et al.. Improved TLD visual target tracking algorithm [J]. Journal of Image and Graphics, 2013, 18(9): 1115-1123. (in Chinese)

[16] 江伟坚, 郭躬德. 复杂环境下高效物体跟踪级联分类器[J]. 中国图象图形学报, 2014, 19(2): 253-265.

    JIANG W J, GUO G D. Efficient cascade classifier for object tracking in complex conditions[J]. Journal of Image and Graphics, 2014,19(2): 253-265. (in Chinese)

[17] VOJIR T, MATAS J. Robustifying the flock of trackers[C]. Proceedings of Computer Vision Winter Workshop, Graz, Austria,2011: 91-97.

[18] ENDRES I, HOIEM D. Category independent object proposals[C]. Proceedings of European Conference on Computer Vision, Berlin, Germany, 2010: 575-588.

[19] ALEXE B, DESELAERS T, FERRARI V. Measuring the objectness of image windows[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012: 34(11): 2189-2202.

[20] UIJLINGS J, VAN D S, GEVERS T, et al.. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.

[21] CHENG M M, ZHANG Z M, LIN W Y. BING: binarized normed gradients for objectness estimation at 300fps [C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Philip, Torr: IEEE, 2014.

[22] BOTTERILL T, MILLS S, GREEN R D. New conditional sampling strategies for speeded-up RANSAC[J]. British Machine Vision Conference, 2009: 1-11.

[23] KALAL Z, MATAS J, MIKOLAJCZYK K. Online learning of robust object detectors during unstable tracking [C]. Proceedings of IEEE International Conference on Computer Vision Workshop, Kyoto, Japan: IEEE, 2009: 1417-1424.

[24] ZHANG Z, WARRELL J, TORR P H . Proposal generation for object detection using cascaded ranking SVMS[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI : IEEE, 2011: 1497-1504.

[25] NEUBECK A, VAN G L. Efficient non-maximum suppression[C]. Proceedings of International Conference on Pattern Recognition, Hong Kong, China, 2006: 850-855.

[26] YU Q, DINH T B, MEDIONI G. Online tracking and reacquisition using co-trained generative and discriminative trackers[C]. Proceedings of European Conference on Computer Vision, Marseille, France, 2008: 678-691.

[27] STALDER S, GRABNER H, GOOL L V. Beyond semi-supervised tracking: Tracking should be as simple as detection, but not simpler than recognition[C]. Proceedings of International Conference on Computer Vision Workshops, Kyoto, Japan: IEEE, 2009: 1409-1416.

程帅, 曹永刚, 孙俊喜, 刘广文, 韩广良. 用基于二值化规范梯度的跟踪学习检测算法高效跟踪目标[J]. 光学 精密工程, 2015, 23(8): 2339. CHENG Shuai, CAO Yong-gang, SUN Jun-xi, LIU Guang-wen, HAN Guang-liang. Efficient target tracking by TLD based on binary normed gradients[J]. Optics and Precision Engineering, 2015, 23(8): 2339.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!