激光与光电子学进展, 2015, 52 (3): 030002, 网络出版: 2015-02-13   

大模场面积光纤单模运转实现方法的研究进展 下载: 928次

Progress of Single Mode Propagation Technology in Large Mode Area Fiber
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
引用该论文

赵楠, 李进延. 大模场面积光纤单模运转实现方法的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030002.

Zhao Nan, Li Jinyan. Progress of Single Mode Propagation Technology in Large Mode Area Fiber[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030002.

参考文献

[1] Limpert J, Schreiber T, Clausnitzer T, et al.. High-power femtosecond Yb-doped fiber amplifier[J]. Opt Express, 2002, 10(14): 628-638.

[2] Hideur A, Chartier T, Ozkul C, et al.. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Opt Lett, 2001, 26(14): 1054-1056.

[3] Okhotnikov O G, Gomes L, Xiang N, et al.. Mode-locked ytterbium fiber laser tunable in the 980-1070 nm spectral range[J]. Opt Lett, 2003, 28(17): 1522-1524.

[4] Selvas R, Sahu J K, Fu L B, et al.. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J]. Opt Lett, 2003, 28(13): 1093-1095.

[5] 代守军, 何兵, 周军, 等. 1.5 kW 近单模全光纤激光器[J]. 中国激光, 2013, 40(7): 0702001.

    Dai Shoujun, He Bing, Zhou Jun, et al.. 1.5 kW near single-mode all-fiber laser[J]. Chinese J Lasers, 2013, 40(7): 0702001.

[6] 徐国建, 李宏利, 杭争翔, 等. 6 mm 碳钢板的激光切割性能[J]. 激光与光电子学进展, 2014, 51(4): 040601.

    Xu Guojian, Li Hongli, Hang Zhengxiang, et al.. Performance of 6 mm mild steel sheet laser cutting[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040601.

[7] Limpert J, Roser F, Klingebiel S, et al.. The rising power of fiber lasers and amplifiers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 537-545.

[8] Sakai J, Kimura T. Bending loss of propagation modes in arbitrary-index profile optical fibers[J]. Appl Opt, 1978, 17(10): 1499-1506.

[9] Marcuse D. Curvature loss formula for optical fibers[J]. J Opt Soc Am, 1976, 66(3): 216-220.

[10] Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Opt Lett, 2000, 25(7): 442-444.

[11] Carter A, Samson B. New technology advances applications for high-power fiber lasers[J]. Military & Aerospace Electronics, 2005, 16(7): 16-21.

[12] Li Libo, Lou Qihong, Zhou Jun, et al.. Transverse-mode controlling of a large-mode-area multimode fiber laser[J]. Chin Opt Lett, 2007, 5(9): 524-526.

[13] Li Libo, Lou Qihong, Zhou Jun, et al.. Influence of bending diameter on output capability of multimode fiber laser[J]. Frontiers of Optoelectronics, 2008, 1(1-2): 91-94.

[14] Wang P, Cooper L J, Clarkson W A, et al.. Helical-core Yb-doped fibre laser[C]. Lasers and Electro-Optics Europe, CLEO Conference on. IEEE, 2003. 612.

[15] P Wang. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser[J]. Opt Lett, 2006, 31(2): 226-228.

[16] Zhao Chujhun, Fan Dianyuan, Peng Runwu, et al.. Core size scaling of helical-core optical fibres[J]. Chin Phys Lett, 2006, 23(10): 2793-2795.

[17] Wong W S, Peng X, McLaughlin J M, et al.. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Opt Lett, 2005, 30(21): 2855-2857.

[18] Dong Liang, Li Jun, Peng Xiang. Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 mm2[J]. Opt Express, 2006, 14(24): 11512-11519.

[19] Dong L, Wu T, McKay H A, et al.. All-glass large-core leakage channel fibers[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 47-53.

[20] Stutzki F, Jansen F, Eidam T, et al.. High average power large-pitch fiber amplifier with robust single-mode operation [J]. Opt Lett, 2011, 36(5): 689-691.

[21] Limpert J, Stutzki F, Jansen F, et al.. Yb-doped large-pitch fibres: Effective single-mode operation based on higherorder mode delocalisation[J]. Light: Science & Applications, 2012, 1(4): e8.

[22] Stutzki F, Jansen F, Jauregui C, et al.. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Opt Lett, 2013, 38(2): 97-99.

[23] Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al.. Mode selection in high power cladding pumped fibre lasers with tapered section[C]. Lasers and Electro-Optics, CLEO. Summaries of Papers Presented at the Conference on. IEEE, 1999. 247-248.

[24] Jeong H, Choi S, Oh K. Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers[J]. Opt Commun, 2002, 213(1-3): 33-37.

[25] Li L, Lou Q, Zhou J, et al.. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Opt Commun, 2008, 281(4): 655-657.

[26] Filippov V, Kerttula J, Chamorovskii Y, et al.. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Opt Express, 2010, 18(12): 12499-12512.

[27] Kerttula J, Filippov V, Chamorovskii Y, et al.. Tapered fiber amplifier with high gain and output power[J]. Laser Physics, 2012, 22(11): 1734-1738.

[28] Trikshev A I, Kurkov A S, Tsvetkov V B, et al.. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier[J]. Laser Phys Lett, 2013, 10(6): 065101.

[29] Leich M, Jaeger M L, Grimm S, et al.. Tapered single-mode Yb-fiber laser at 976 nm[C]. Specialty Optical Fibers, 2014. SoM3B. 6.

[30] Siegman A E. Propagating modes in gain-guided optical fibers[J]. J Opt Soc Am, 2003, 20(8): 1617-1628.

[31] Siegman A E, Chen Y, Sudesh V, et al.. Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber[J]. Appl Phys Lett, 2006, 89(25): 251101.

[32] Chen Y, McComb T, Sudesh V, et al.. Very large-core, single-mode, gain-guided, index-antiguided fiber lasers[J]. Opt Lett, 2007, 32(17): 2505-2507.

[33] Sudesh V, McComb T, Chen Y, et al.. Diode-pumped 200 mm diameter core, gain-guided, index-antiguided single mode fiber laser[J]. Appl Phys B, 2008, 90(3-4): 369-372.

[34] Hageman W, Chen Y, Wang X, et al.. Scalable side-pumped, gain-guided index-antiguided fiber laser[J]. J Opt Soc Am B, 2010, 27(12): 2451-2459.

[35] 李玮楠, 陆敏, 彭波. 掺Yb3+增益导引-折射率反导引光纤特性研究[C]. 中国光学学会2010 年光学大会论文集, 2010. 1868-1872.

    Li Weinan, Lu Min, Peng Bo. Study on the characteristic of Yb3 +-gain guided index-antiguided fiber[C]. The Chinese Optical Society 2010 Optical Conference Proceedings, 2010. 1868-1872.

[36] Li W, Lu M, Yang Z, et al.. Fabrication and characterization of Yb3+-doped gain-guided index-antiguided fiber with Dshaped inner cladding[J]. J Opt Soc Am B, 2011, 28(6): 1498-1501.

[37] Wang X, Chen Y, Hageman W, et al.. Transverse mode competition in gain-guided index antiguided fiber lasers[J]. J Opt Soc Am B, 2012, 29(2): 191-196.

[38] Zhu Y, Duan K, Zhao B, et al.. Output performance of gain guided and index antiguided fiber lasers pumped by different methods[C]. Wireless and Optical Communication Conference (WOCC), 2013. 486-490.

[39] Knight J C, Birks T A, Russell P S J, et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt Lett, 1996, 21(19): 1547-1549.

[40] Wadsworth W, Percival R M, Bouwmans G, et al.. High power air-clad photonic crystal fiber laser[J]. Opt Express, 2003, 11(1): 48-53.

[41] Limpert J, Liem A, Reich M, et al.. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Opt Express, 2004, 12(7): 1313-1319.

[42] Brooks C D, Di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 mm core diameter, Yb-doped rodlike photonic crystal fiber amplifier[J]. Appl Phys Lett, 2006, 89(11): 11119-11122.

[43] Limpert J, Schmidt O, Rothhardt J, et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt Express, 2006, 14(7): 2715-2720.

[44] Alkeskjold T T, Laurila M, Scolari L, et al.. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Opt Express, 2011, 19(8): 7398-7409.

[45] Napierala M, Nasilowski T, Beres-Pawlik E, et al.. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss[J]. Opt Express, 2011, 19(23): 22628-22636.

[46] Kashiwagi M, Saitoh K, Takenaga K, et al.. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers[J]. Opt Express, 2012, 20(14): 15061-15070.

[47] Limpert J, Zellmer H, Tünnermann A, et al.. Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM)[J]. Advanced Solid-State Lasers, 2002. 68.

[48] Hotoleanu M, Soderlund M, Kliner D, et al.. High-order modes suppression in large mode area active fibers by controlling the radial distribution of the rare earth dopant[C]. Lasers and Applications in Science and Engineering, International Society for Optics and Photonics, 2006. 61021T.

[49] 袁艳阳, 巩马理. 大模面积光纤中折射率和掺杂分布的设计和分析[J]. 中国激光, 2008, 35(9): 1355-1359.

    Yuan Yanyang, Gong Mali. Analysis and design of refractive-index and dopant distributions for large-mode-area fibers [J]. Chinese J Lasers, 2008, 35(9): 1355-1359.

[50] Marciante J R, Roides R G, Shkunov V V, et al.. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Opt Lett, 2010, 35(11): 1828-1830.

[51] Wang Wenliang, Huang Liangjin, Leng Jinyong, et al.. Specific mode output from multimode fiber oscillators by designing the rare earth doping profiles[J]. Chin Phys B, 2014, 23(9): 094207.

[52] Ramachandran S, Nicholson J W, Ghalmi S, et al.. Light propagation with ultralarge modal areas in optical fibers[J]. Opt Lett, 2006, 31(12): 1797-1799.

[53] Nicholson J W, Ramachandran S, Ghalmi S, et al.. Propagation of femtosecond pulses in large-mode-area, higherorder-mode fiber[J]. Opt Lett, 2006, 31(21): 3191-3193.

[54] Nicholson J W, Ramachandran S, Ghalmi S. A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber[J]. Opt Express, 2007, 15(11): 6623-6628.

[55] Nicholson J W, Fini J M, DeSantolo A M, et al.. Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers[J]. Opt Express, 2012, 20(22): 24575-24584.

[56] Nicholson J W, Fini J M, Liu X, et al.. Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output[C]. CLEO: Science and Innovations, 2013. CW3M. 3.

[57] Liu C H, Chang G, Litchinister N, et al.. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively singlemode core size scaling[C]. Conference on Lasers and Electro-Optics, 2007. CTuBB3.

[58] Swan M C, Liu C H, Guertin D, et al.. 33 mm core effectively single-mode chirally-coupled-core fiber laser at 1064-nm [C]. Optical Fiber Communication Conference, 2008. OWU2.

[59] Huang S, Zhu C, Liu C H, et al.. Power scaling of CCC fiber based lasers[C]. Conference on Lasers and Electro-Optics, 2009. CThGG

[60] Zhu C, Hu I, Ma X, et al.. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output[C]. Advanced Solid-State Photonics, 2011. AMC

[61] Ma X, Zhu C, Hu I, et al.. Single-mode chirally-coupled-core fibers with larger than 50 mm diameter cores[J]. Opt Express, 2014, 22(8): 9206-9219.

赵楠, 李进延. 大模场面积光纤单模运转实现方法的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030002. Zhao Nan, Li Jinyan. Progress of Single Mode Propagation Technology in Large Mode Area Fiber[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!