激光与光电子学进展, 2015, 52 (3): 030002, 网络出版: 2015-02-13   

大模场面积光纤单模运转实现方法的研究进展 下载: 928次

Progress of Single Mode Propagation Technology in Large Mode Area Fiber
作者单位
华中科技大学武汉光电国家实验室, 湖北 武汉 430074
摘要
非线性效应和光纤损伤是抑制光纤激光器功率提升的主要因素,因此实现单模运转的大模场面积光纤成为国内外研究人员关注的热点。从光纤滤模、光纤结构设计和模式转换三方面出发,详细介绍了当前大模场面积光纤高阶模抑制技术的研究进展,通过对比几种技术方案,对高功率光纤激光器单模运转的发展进行了展望。
Abstract
Due to nonlinear effects and optical damage which limit the power promotion of fiber lasers, large mode area fiber with single mode propagation has aroused wide public interest over recent years. The latest progress of single mode output technology in large mode area fiber is introduced from three aspects including fiber modes filtering, structure design and modes conversion. The development trends of high power fiber lasers are also prospected by comparing these methods.
参考文献

[1] Limpert J, Schreiber T, Clausnitzer T, et al.. High-power femtosecond Yb-doped fiber amplifier[J]. Opt Express, 2002, 10(14): 628-638.

[2] Hideur A, Chartier T, Ozkul C, et al.. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Opt Lett, 2001, 26(14): 1054-1056.

[3] Okhotnikov O G, Gomes L, Xiang N, et al.. Mode-locked ytterbium fiber laser tunable in the 980-1070 nm spectral range[J]. Opt Lett, 2003, 28(17): 1522-1524.

[4] Selvas R, Sahu J K, Fu L B, et al.. High-power, low-noise, Yb-doped, cladding-pumped, three-level fiber sources at 980 nm[J]. Opt Lett, 2003, 28(13): 1093-1095.

[5] 代守军, 何兵, 周军, 等. 1.5 kW 近单模全光纤激光器[J]. 中国激光, 2013, 40(7): 0702001.

    Dai Shoujun, He Bing, Zhou Jun, et al.. 1.5 kW near single-mode all-fiber laser[J]. Chinese J Lasers, 2013, 40(7): 0702001.

[6] 徐国建, 李宏利, 杭争翔, 等. 6 mm 碳钢板的激光切割性能[J]. 激光与光电子学进展, 2014, 51(4): 040601.

    Xu Guojian, Li Hongli, Hang Zhengxiang, et al.. Performance of 6 mm mild steel sheet laser cutting[J]. Laser & Optoelectronics Progress, 2014, 51(4): 040601.

[7] Limpert J, Roser F, Klingebiel S, et al.. The rising power of fiber lasers and amplifiers[J]. IEEE J Sel Top Quantum Electron, 2007, 13(3): 537-545.

[8] Sakai J, Kimura T. Bending loss of propagation modes in arbitrary-index profile optical fibers[J]. Appl Opt, 1978, 17(10): 1499-1506.

[9] Marcuse D. Curvature loss formula for optical fibers[J]. J Opt Soc Am, 1976, 66(3): 216-220.

[10] Koplow J P, Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fiber amplifier[J]. Opt Lett, 2000, 25(7): 442-444.

[11] Carter A, Samson B. New technology advances applications for high-power fiber lasers[J]. Military & Aerospace Electronics, 2005, 16(7): 16-21.

[12] Li Libo, Lou Qihong, Zhou Jun, et al.. Transverse-mode controlling of a large-mode-area multimode fiber laser[J]. Chin Opt Lett, 2007, 5(9): 524-526.

[13] Li Libo, Lou Qihong, Zhou Jun, et al.. Influence of bending diameter on output capability of multimode fiber laser[J]. Frontiers of Optoelectronics, 2008, 1(1-2): 91-94.

[14] Wang P, Cooper L J, Clarkson W A, et al.. Helical-core Yb-doped fibre laser[C]. Lasers and Electro-Optics Europe, CLEO Conference on. IEEE, 2003. 612.

[15] P Wang. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser[J]. Opt Lett, 2006, 31(2): 226-228.

[16] Zhao Chujhun, Fan Dianyuan, Peng Runwu, et al.. Core size scaling of helical-core optical fibres[J]. Chin Phys Lett, 2006, 23(10): 2793-2795.

[17] Wong W S, Peng X, McLaughlin J M, et al.. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Opt Lett, 2005, 30(21): 2855-2857.

[18] Dong Liang, Li Jun, Peng Xiang. Bend-resistant fundamental mode operation in ytterbium-doped leakage channel fibers with effective areas up to 3160 mm2[J]. Opt Express, 2006, 14(24): 11512-11519.

[19] Dong L, Wu T, McKay H A, et al.. All-glass large-core leakage channel fibers[J]. IEEE J Sel Top Quantum Electron, 2009, 15(1): 47-53.

[20] Stutzki F, Jansen F, Eidam T, et al.. High average power large-pitch fiber amplifier with robust single-mode operation [J]. Opt Lett, 2011, 36(5): 689-691.

[21] Limpert J, Stutzki F, Jansen F, et al.. Yb-doped large-pitch fibres: Effective single-mode operation based on higherorder mode delocalisation[J]. Light: Science & Applications, 2012, 1(4): e8.

[22] Stutzki F, Jansen F, Jauregui C, et al.. 2.4 mJ, 33 W Q-switched Tm-doped fiber laser with near diffraction-limited beam quality[J]. Opt Lett, 2013, 38(2): 97-99.

[23] Alvarez-Chavez J A, Grudinin A B, Nilsson J, et al.. Mode selection in high power cladding pumped fibre lasers with tapered section[C]. Lasers and Electro-Optics, CLEO. Summaries of Papers Presented at the Conference on. IEEE, 1999. 247-248.

[24] Jeong H, Choi S, Oh K. Continuous wave single transverse mode laser oscillation in a Nd-doped large core double clad fiber cavity with concatenated adiabatic tapers[J]. Opt Commun, 2002, 213(1-3): 33-37.

[25] Li L, Lou Q, Zhou J, et al.. High power single transverse mode operation of a tapered large-mode-area fiber laser[J]. Opt Commun, 2008, 281(4): 655-657.

[26] Filippov V, Kerttula J, Chamorovskii Y, et al.. Highly efficient 750 W tapered double-clad ytterbium fiber laser[J]. Opt Express, 2010, 18(12): 12499-12512.

[27] Kerttula J, Filippov V, Chamorovskii Y, et al.. Tapered fiber amplifier with high gain and output power[J]. Laser Physics, 2012, 22(11): 1734-1738.

[28] Trikshev A I, Kurkov A S, Tsvetkov V B, et al.. A 160 W single-frequency laser based on an active tapered double-clad fiber amplifier[J]. Laser Phys Lett, 2013, 10(6): 065101.

[29] Leich M, Jaeger M L, Grimm S, et al.. Tapered single-mode Yb-fiber laser at 976 nm[C]. Specialty Optical Fibers, 2014. SoM3B. 6.

[30] Siegman A E. Propagating modes in gain-guided optical fibers[J]. J Opt Soc Am, 2003, 20(8): 1617-1628.

[31] Siegman A E, Chen Y, Sudesh V, et al.. Confined propagation and near single-mode laser oscillation in a gain-guided, index antiguided optical fiber[J]. Appl Phys Lett, 2006, 89(25): 251101.

[32] Chen Y, McComb T, Sudesh V, et al.. Very large-core, single-mode, gain-guided, index-antiguided fiber lasers[J]. Opt Lett, 2007, 32(17): 2505-2507.

[33] Sudesh V, McComb T, Chen Y, et al.. Diode-pumped 200 mm diameter core, gain-guided, index-antiguided single mode fiber laser[J]. Appl Phys B, 2008, 90(3-4): 369-372.

[34] Hageman W, Chen Y, Wang X, et al.. Scalable side-pumped, gain-guided index-antiguided fiber laser[J]. J Opt Soc Am B, 2010, 27(12): 2451-2459.

[35] 李玮楠, 陆敏, 彭波. 掺Yb3+增益导引-折射率反导引光纤特性研究[C]. 中国光学学会2010 年光学大会论文集, 2010. 1868-1872.

    Li Weinan, Lu Min, Peng Bo. Study on the characteristic of Yb3 +-gain guided index-antiguided fiber[C]. The Chinese Optical Society 2010 Optical Conference Proceedings, 2010. 1868-1872.

[36] Li W, Lu M, Yang Z, et al.. Fabrication and characterization of Yb3+-doped gain-guided index-antiguided fiber with Dshaped inner cladding[J]. J Opt Soc Am B, 2011, 28(6): 1498-1501.

[37] Wang X, Chen Y, Hageman W, et al.. Transverse mode competition in gain-guided index antiguided fiber lasers[J]. J Opt Soc Am B, 2012, 29(2): 191-196.

[38] Zhu Y, Duan K, Zhao B, et al.. Output performance of gain guided and index antiguided fiber lasers pumped by different methods[C]. Wireless and Optical Communication Conference (WOCC), 2013. 486-490.

[39] Knight J C, Birks T A, Russell P S J, et al.. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt Lett, 1996, 21(19): 1547-1549.

[40] Wadsworth W, Percival R M, Bouwmans G, et al.. High power air-clad photonic crystal fiber laser[J]. Opt Express, 2003, 11(1): 48-53.

[41] Limpert J, Liem A, Reich M, et al.. Low-nonlinearity single-transverse-mode ytterbium-doped photonic crystal fiber amplifier[J]. Opt Express, 2004, 12(7): 1313-1319.

[42] Brooks C D, Di Teodoro F. Multimegawatt peak-power, single-transverse-mode operation of a 100 mm core diameter, Yb-doped rodlike photonic crystal fiber amplifier[J]. Appl Phys Lett, 2006, 89(11): 11119-11122.

[43] Limpert J, Schmidt O, Rothhardt J, et al.. Extended single-mode photonic crystal fiber lasers[J]. Opt Express, 2006, 14(7): 2715-2720.

[44] Alkeskjold T T, Laurila M, Scolari L, et al.. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Opt Express, 2011, 19(8): 7398-7409.

[45] Napierala M, Nasilowski T, Beres-Pawlik E, et al.. Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss[J]. Opt Express, 2011, 19(23): 22628-22636.

[46] Kashiwagi M, Saitoh K, Takenaga K, et al.. Effectively single-mode all-solid photonic bandgap fiber with large effective area and low bending loss for compact high-power all-fiber lasers[J]. Opt Express, 2012, 20(14): 15061-15070.

[47] Limpert J, Zellmer H, Tünnermann A, et al.. Suppression of higher order modes in a multimode fiber amplifier using efficient gain-loss-management (GLM)[J]. Advanced Solid-State Lasers, 2002. 68.

[48] Hotoleanu M, Soderlund M, Kliner D, et al.. High-order modes suppression in large mode area active fibers by controlling the radial distribution of the rare earth dopant[C]. Lasers and Applications in Science and Engineering, International Society for Optics and Photonics, 2006. 61021T.

[49] 袁艳阳, 巩马理. 大模面积光纤中折射率和掺杂分布的设计和分析[J]. 中国激光, 2008, 35(9): 1355-1359.

    Yuan Yanyang, Gong Mali. Analysis and design of refractive-index and dopant distributions for large-mode-area fibers [J]. Chinese J Lasers, 2008, 35(9): 1355-1359.

[50] Marciante J R, Roides R G, Shkunov V V, et al.. Near-diffraction-limited operation of step-index large-mode-area fiber lasers via gain filtering[J]. Opt Lett, 2010, 35(11): 1828-1830.

[51] Wang Wenliang, Huang Liangjin, Leng Jinyong, et al.. Specific mode output from multimode fiber oscillators by designing the rare earth doping profiles[J]. Chin Phys B, 2014, 23(9): 094207.

[52] Ramachandran S, Nicholson J W, Ghalmi S, et al.. Light propagation with ultralarge modal areas in optical fibers[J]. Opt Lett, 2006, 31(12): 1797-1799.

[53] Nicholson J W, Ramachandran S, Ghalmi S, et al.. Propagation of femtosecond pulses in large-mode-area, higherorder-mode fiber[J]. Opt Lett, 2006, 31(21): 3191-3193.

[54] Nicholson J W, Ramachandran S, Ghalmi S. A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber[J]. Opt Express, 2007, 15(11): 6623-6628.

[55] Nicholson J W, Fini J M, DeSantolo A M, et al.. Scaling the effective area of higher-order-mode erbium-doped fiber amplifiers[J]. Opt Express, 2012, 20(22): 24575-24584.

[56] Nicholson J W, Fini J M, Liu X, et al.. Single-frequency pulse amplification in a higher-order mode fiber amplifier with fundamental-mode output[C]. CLEO: Science and Innovations, 2013. CW3M. 3.

[57] Liu C H, Chang G, Litchinister N, et al.. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively singlemode core size scaling[C]. Conference on Lasers and Electro-Optics, 2007. CTuBB3.

[58] Swan M C, Liu C H, Guertin D, et al.. 33 mm core effectively single-mode chirally-coupled-core fiber laser at 1064-nm [C]. Optical Fiber Communication Conference, 2008. OWU2.

[59] Huang S, Zhu C, Liu C H, et al.. Power scaling of CCC fiber based lasers[C]. Conference on Lasers and Electro-Optics, 2009. CThGG

[60] Zhu C, Hu I, Ma X, et al.. Single-frequency and single-transverse mode Yb-doped CCC fiber MOPA with robust polarization SBS-free 511 W output[C]. Advanced Solid-State Photonics, 2011. AMC

[61] Ma X, Zhu C, Hu I, et al.. Single-mode chirally-coupled-core fibers with larger than 50 mm diameter cores[J]. Opt Express, 2014, 22(8): 9206-9219.

赵楠, 李进延. 大模场面积光纤单模运转实现方法的研究进展[J]. 激光与光电子学进展, 2015, 52(3): 030002. Zhao Nan, Li Jinyan. Progress of Single Mode Propagation Technology in Large Mode Area Fiber[J]. Laser & Optoelectronics Progress, 2015, 52(3): 030002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!