激光与光电子学进展, 2013, 50 (12): 120004, 网络出版: 2013-11-19   

光流控流式细胞术的研究进展 下载: 553次

Research Progress of Optofluidic Flow Cytometry
作者单位
1 中国科学院深圳先进技术研究院光电工程技术中心,深圳生物医学光电传感技术工程实验室, 广东 深圳 518055
2 华中科技大学武汉光电国家实验室(筹), 湖北 武汉 430074
摘要
光流控是一项将光学和微流控技术结合起来,在微芯片上实现部分种类细胞计数、分选等功能的新技术。近些年来伴随着光流控技术的蓬勃发展,流式细胞仪小型化、价格下降以及更紧凑的趋势逐渐明显,而这将会给医疗保健诊断以及某些疾病的预防检测带来极大的便利。对目前该领域液流控制、照明及探测光学、新型分选装置等方面的最新进展进行了介绍。
Abstract
Optofluidic technology is a new technology which combines optics and microfluidic technology to achieve cell counting and sorting of some species and other functions on the microchip. Miniaturization, lower prices and more compact structure of flow cytometry have been a trend with the vigorous development of optofluidic technologies in recent years. It brings great convenience to health-care diagnostics, prevention and detection of certain diseases, that will improve the living standards of people. We introduce the lighting and detection optics, novel sorting equipment and other aspects of the latest developments in this field.
参考文献

[1] 魏熙胤, 牛瑞芳. 流式细胞仪的发展历史及其原理和应用进展[J]. 现代仪器, 2006, (4): 8-11.

    Wei Xiyin, Niu Ruifang. The development history, mechanism and application of flow cytometer [J]. Modern Instruments and Medical Treatment, 2006, (4): 8-11.

[2] 刘守坤, 苏显中, 金庆辉, 等. 微流控芯片流式细胞术[J]. 微电子学, 2009, 39(5): 696-703.

    Liu Shoukun, Su Xianzhong, Jin Qinghui, et al.. Microfluidic chip flow cytometry [J]. Microelectronics, 2009, 39(5): 696-703.

[3] J Knight, A Vishwanath, J Brody, et al.. Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds [J]. Phys Rev Lett, 1998, 80(17): 3863-3866.

[4] G Lee, C Hung, B Ke, et al.. Hydrodynamic focusing for a micromachined flow cytometer [J]. J Fluids Engineering, 2001, 123(3): 672-679.

[5] M Rosenauer, W Buchegger, I Finoulst, et al.. Miniaturized flow cytometer with 3D hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes [J]. Microfluidics and Nanofluidics, 2011, 10(4): 761-771.

[6] S Hong, P Tsou, C Chou, et al.. Microfluidic three-dimensional hydrodynamic flow focusing for the rapid protein concentration analysis [J]. Biomicrofluidics, 2012, 6(2): 024132.

[7] G Testa, R Bernini. Micro flow cytometer with 3D hydrodynamic focusing [C]. SPIE, 2012, 8212: 82120H.

[8] J Godin, C Chen, S Cho, et al.. Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip [J]. J Biophotonics, 2008, 1(5): 355-376.

[9] T D Chung, H C Kim. Recent advances in miniaturized microfluidic flow cytometry for clinical use [J]. Electrophoresis, 2007, 28(24): 4511-4520.

[10] S Lin, P Yen, C Peng, et al.. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing [J]. Lab Chip, 2012, 12(17): 3135-3141.

[11] Y W Kim, J Y Yoo. Axisymmetric flow focusing of particles in a single microchannel [J]. Lab Chip, 2009, 9(8): 1043-1045.

[12] J Shi, X Mao, D Ahmed, et al.. Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW) [J]. Lab Chip, 2008, 8(2): 221-223.

[13] 万静, 梁忠诚. 微流控光学芯片中新型液体驱动技术[J]. 激光与光电子学进展, 2010, 47(9): 091302.

    Wan Jing, Liang Zhongcheng. New techniques of optofluidic chip on actuation of liquid [J]. Laser & Optoelectronics Progress, 2010, 47(9): 091302.

[14] S Yang, J Y Kim, S J Lee, et al.. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel [J]. Lab Chip, 2011, 11(2): 266-273.

[15] S Emaminejad, M Javanmard, R W Dutton, et al.. Microfluidic diagnostic tool for the developing world: contactless impedance flow cytometry [J]. Lab Chip, 2012, 12(21): 4499-4507.

[16] D Barat, D Spencer, G Benazzi, et al.. Simultaneous high speed optical and impedance analysis of single particles with a microfluidic cytometer [J]. Lab Chip, 2012, 12(1): 118-126.

[17] N Pamme, R Koyama, A Manz. Counting and sizing of particles and particle agglomerates in a microfluidic device using laser light scattering: application to a particle-enhanced immunoassay [J]. Lab Chip, 2003, 3(3): 187-192.

[18] B Rene, F Michel, C Alain. Flow Cytometry Analysis Across Optical Fiber [P]. World Patent, WO2007/022641, 2007-03-01.

[19] Z Shen, Y Zou, X Chen. Characterization of microdroplets using optofluidic signals [J]. Lab Chip, 2012, 12(19): 3816-3820.

[20] S K Tang, B T Mayers, D V Vezenov, et al.. Optical waveguiding using thermal gradients across homogeneous liquids in microfluidic channels [J]. Appl Phys Lett, 2006, 88(6): 061112.

[21] Y Yang, A Q Liu, L K Chin, et al.. Optofluidic waveguide as a transformation optics device for lightwave bending and manipulation [J]. Nature Commun, 2012, 3(1): 651.

[22] P Fei, Z Chen, Y Men, et al.. A compact optofluidic cytometer with integrated liquid-core/PDMS-cladding waveguides [J]. Lab Chip, 2012, 12(19): 3700-3706.

[23] N Gopalakrishnan, K S Sagar, M B Christiansen, et al.. UV patterned nanoporous solid-liquid core waveguides [J]. Opt Express, 2010, 18(12): 12903-12908.

[24] H C Sung, J Godin, L Yu-Hwa. Optofluidic waveguides in teflon AF-coated PDMS microfluidic channels [J]. IEEE Photon Technol Lett, 2009, 21(15): 1057-1059.

[25] W Song, D Psaltis. Pneumatically tunable optofluidic dye laser [J]. Appl Phys Lett, 2010, 96(8): 081101.

[26] Y Yang, A Q Liu, L K Chin, et al.. A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams [J]. Lab Chip, 2011, 11(18): 3182-3187.

[27] R Bernini, G Testa, L Zeni, et al.. Integrated optofluidic Mach-Zehnder interferometer based on liquid core waveguides [J]. Appl Phys Lett, 2008, 93(1): 011106.

[28] N Pamme, A Manz. On-chip free-flow magnetophoresis: continuous flow separation of magnetic particles and agglomerates [J]. Anal Chem, 2004, 76(24): 7250-7256.

[29] T Laurell, F Petersson, A Nilsson. Chip integrated strategies for acoustic separation and manipulation of cells and particles [J]. Chem Soc Rev, 2007, 36(3): 492-506.

[30] N Pamme. Continuous flow separations in microfluidic devices [J]. Lab Chip, 2007, 7(12): 1644-1659.

[31] A Y Fu, C Spence, A Scherer, et al.. A microfabricated fluorescence-activated cell sorter [J]. Nature Biotechnol, 1999, 17(11): 1109-1111.

[32] P S Dittrich, P Schwille. An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles [J]. Anal Chem, 2003, 75(21): 5767-5774.

[33] S Fiedler, R Hagedorn, T Schnelle, et al.. Diffusional electrotitration: generation of pH gradients over arrays of ultramicroelectrodes detected by fluorescence [J]. Anal Chem, 1995, 67(5): 820-828.

[34] Y Lin, G Lee. Optically induced flow cytometry for continuous microparticle counting and sorting [J]. Biosensors and Bioelectronics, 2008, 24(4): 572-578.

[35] C H Chen, S H Cho, F Tsai, et al.. Microfluidic cell sorter with integrated piezoelectric actuator [J]. Biomedical Microdevices, 2009, 11(6): 1223-1231.

[36] S H Cho, C H Chen, Y H Lo. Optofluidic biosensors-miniaturized multi-color flow cytometer and fluorescence-activated cell sorter (microFACS) [C]. SPIE, 2011, 8089: 80990F.

[37] A Wolff, I R Perch-Nielsen, U D Larsen, et al.. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter [J]. Lab Chip, 2003, 3(1): 22-27.

[38] M M Wang, E Tu, D E Raymond, et al.. Microfluidic sorting of mammalian cells by optical force switching [J]. Nature Biotechnol, 2005, 23(1): 83-87.

[39] 周妍煌, 李婧方, 任有健, 等. 适用于微流控芯片颗粒分选的阵列光镊系统[J]. 中国激光, 2010, 37(6): 1659-1664.

    Zhou Yanhuang, Li Jingfang, Ren Youjian, et al.. Optical tweezers arrays based on double-plate shearing interference for microfluidic particle sorter [J]. Chinese J Lasers, 2010, 37(6): 1659-1664.

[40] S H Cho, J M Godin, C H Chen, et al.. Recent advancements in optofluidic flow cytometer [J]. Biomicrofluidics, 2010, 4(4): 043001.

罗栋, 鲁远甫, 焦国华, 董玉明, 刘鹏, 陈四海, 吕建成. 光流控流式细胞术的研究进展[J]. 激光与光电子学进展, 2013, 50(12): 120004. Luo Dong, Lu Yuanfu, Jiao Guohua, Dong Yuming, Liu Peng, Chen Sihai, Lü Jiancheng. Research Progress of Optofluidic Flow Cytometry[J]. Laser & Optoelectronics Progress, 2013, 50(12): 120004.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!