光学学报, 2014, 34 (6): 0622007, 网络出版: 2014-04-23  

中波红外傅里叶变换成像光谱仪后置成像系统分析与设计

Design and Analysis for the Rear Imaging System of a Medium Wave Infrared Fourier Transform Imaging Spectrometer
作者单位
1 中国科学院长春光学精密机械与物理研究所, 应用光学国家重点实验室, 吉林, 长春 130033
2 中国科学院大学, 北京 100049
摘要
提出了一种基于多级微反射镜的静态化新型红外傅里叶变换成像光谱仪结构。系统不含狭缝和可动部件,因此光通量大、结构稳定。介绍了该成像光谱仪的工作原理和光程差的产生方式。根据系统原理对后置成像光学系统进行了分析与设计。结果表明:在-20 ℃~60 ℃的温度范围内,系统成像质量良好。全视场传递函数在CCD奈奎斯特频率17 lp/mm处大于0.6。系统的均方根(RMS)最大光斑直径小于12 μm,系统单个像元能量集中度大于80%,冷光阑匹配效率接近100%。以RMS光斑直径变化为标准,计算了系统的公差灵敏度矩阵,计算结果表明,后置成像系统0视场光斑尺寸小于16 μm的可能性为97.7%。
Abstract
A novel static infrared Fourier transform imaging spectrometer based on the multi-level micro-mirrors is proposed. The system does not contain slit and moving parts, thus the system has the advantages of a large luminous flux and a stable structure. The working principle and the generating means of the optical path difference for the imaging spectrometer are introduced. According to the working principle of the system, the rear imaging system has been analyzed and designed. The designed results show that the rear imaging system has a fine image quality at the temperature range of -20 ℃~60 ℃. In the full field of the Nyquist frequency of 17 lp/mm, the modulation transfer function (MTF) of the rear imaging system is greater than 0.6. The maximum root mean square (RMS) spot diameter of the system is less than 12 μm. The single pixel energy concentration is greater than 80% and the cold stop matching efficiency is near 100%. The changing of the RMS spot diameter as the standard is used to calculate the tolerance sensitivity matrix and the result shows that in the zero field the probability of spot diameter less than 16 μm is 97.7%.
参考文献

[1] X Prieto-Blanco, C Montero-Orille, B Couce, et al.. Analytical design of an offner imaging spectrometer [J]. Opt Express, 2006, 16(20): 9156-9168.

[2] B Swinyard, M Ferlet. Cascaded interferometric imaging spectrometer [J]. Appl Opt, 2009, 46(25): 6381-6390.

[3] 李幼平, 禹秉熙, 韩昌元, 等. 成像光谱仪工程权衡优化设计的光学结构[J]. 光学 精密工程, 2006, 14(6): 974-979.

    Li Youping, Yu Bingxi, Han Changyuan, et al.. Tradeoff optimization design of optical configuration on imaging spectrometer [J]. Optical and Precision Engineering, 2006, 14(6): 974-979.

[4] 刘玉娟, 崔继承, 巴音贺希格, 等. 凸面光栅成像光谱仪的研制与应用[J]. 光学 精密工程, 2012, 20(1): 52-57.

    Liu Yujuan, Cui Jicheng, Bayanheshig, et al.. Design and application of imaging spectrometer with convex grating [J]. Optical and Precision Engineering, 2012, 20(1): 52-57.

[5] 于磊, 林冠宇, 曲艺, 等. 高分辨率星载真空紫外成像光谱仪设计与研究[J]. 光谱学与光谱分析, 2011, 31(12): 3417-3422.

    Yu Lei, Lin Guanyu, Qu Yi, et al.. Design and study of a high resolution vacuum ultraviolet imaing spectrometer carried by satellite [J]. Spectroscopy and Spectral Analysis, 2011, 31(12): 3417-3422.

[6] M W Kudenov, E L Dereniak. Compact real-time birefringent imaging spectrometer [J]. Opt Express, 2012, 20(16): 17973-17986.

[7] M R Descour, C E Volin, E L Dereniak, et al.. Demonstration of a high-speed nonscanning imaging spectrometer [J]. Opt Lett, 1997, 22(16): 1271-1273.

[8] Yann Ferrec, Jean Taboury, Hervé Sauer, et al.. Experimental results from an airborne static Fourier transform imaging spectrometer [J]. Appl Opt, 2011, 50(30): 5894-5904.

[9] P G Lucey, K A Horton, T J Williams, et al.. SMIFTS: a cryogenically-cooled spatially-modulated imaging infrared interferometer spectrometer [C]. SPIE, 1994, 1937: 130-141.

[10] M R Carter, C L Bennett, D J Fields, et al.. Livermore imaging Fourier transform infrared spectrometer [C]. SPIE, 1995, 2480: 380-386.

[11] T K Mu, C M Zhang, W Y Ren, et al.. Static polarizatio-difference interference imaging spectrometer [J]. Opt Lett, 2012, 37(17): 3507-3509.

[12] 董瑛, 相里斌, 赵葆常.大孔径静态干涉成像光谱仪的干涉系统分析[J]. 光学学报, 2001, 21(3): 330-334.

    Dong Ying, Xiangli Bin, Zhao Baochang. Analysis of interferometer system in a large aperture static imaging spectrometer [J]. Acta Optica Sinica, 2001, 21(3): 330-334.

[13] T Inoue, K Itoh, Y Ichioka. Fourier-transform spectral imaging near the image plane [J]. Opt Lett, 1991, 16(12): 934-936.

[14] 孟鑫, 李建欣, 朱日宏, 等. 高光谱像面干涉的近场成像机理研究[J]. 光学学报, 2013, 33(2): 0230001.

    Meng Xin, Li Jianxin, Zhu Rihong, et al.. Near-field mechanism research on hyperspectral image plane interferometric imaging [J]. Acta Optical Sinica, 2013, 33(2): 0230001.

[15] 曲贺盟, 张新, 王灵杰, 等. 大相对孔径紧凑型无热化红外光学系统设计[J]. 光学学报, 2012, 32(3): 0322003.

    Qu Hemeng, Zhang Xin, Wang Lingjie, et al.. Design of a low F-number compact athermalizing infrared optical system [J]. Acta Optical Sinica, 2012, 32(3): 0322003.

[16] 常虹. 透射式红外光学系统热光学稳定性关键技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. 18-31.

    Chang Hong. Research on Key Techniques of Thermo-Optical Stability for Refractive Infrared System [D]. Harbin: Harbin Institute of Technology, 2011. 18-31.

[17] 付建国, 梁静秋, 梁中翥. 静态傅里叶变换红外光谱仪的公差分析[J]. 光学学报, 2012, 32(6): 0607002.

    Fu Jianguo, Liang Jingqiu, Liang Zhongzhu. Tolerance analysis for a static Fourier-transform infrared spectrometer based on multi-micro mirrors [J]. Acta Optical Sinica, 2012, 32(6): 0607002.

王文丛, 梁静秋, 梁中翥, 吕金光, 秦余欣, 田超, 王维彪. 中波红外傅里叶变换成像光谱仪后置成像系统分析与设计[J]. 光学学报, 2014, 34(6): 0622007. Wang Wencong, Liang Jingqiu, Liang Zhongzhu, Lü Jinguang, Qin Yuxin, Tian Chao, Wang Weibiao. Design and Analysis for the Rear Imaging System of a Medium Wave Infrared Fourier Transform Imaging Spectrometer[J]. Acta Optica Sinica, 2014, 34(6): 0622007.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!