强激光与粒子束, 2016, 28 (8): 28083204, 网络出版: 2016-07-26  

电磁场辐照诱发真空电晕放电模拟试验系统

Simulation test system of vacuum corona discharge induced by electromagnetic field
作者单位
1 石家庄铁道大学 电气与电子工程学院, 石家庄 050043
2 军械工程学院 静电与电磁防护研究所, 石家庄 050003
摘要
为研究真空环境下电磁场诱发针-板电晕放电特性,研制了电磁场发生器、真空系统、高压静电源、动态电位测试仪等组成的电磁场辐照诱发真空电晕放电模拟试验系统。该系统可实现真空管内气压为80 Pa的低真空环境,并利用此系统进行在电磁场的作用下的电晕放电试验,初步得到了电磁场辐照诱发电晕放电的阈值电压的变化规律。试验结果表明:当温度、湿度等其他环境因素基本不变,真空管内气压为80 Pa时, 正常放电阈值为-590 V, 利用负极性高压静电放电, 电压取值范围10~20 kV, 产生的电磁脉冲辐射作用于真空管内充电区域,可使放电阈值降低90~180 V。
Abstract
In order to study the characteristics of the needle-plate corona discharge induced by the electromagnetic field in the vacuum environment, a simulation test system of corona discharge induced by the electromagnetic fields, such as the electromagnetic field generator, the vacuum system, the high voltage power supply, and the dynamic potential tester, is developed. The system can realize a low vacuum environment of 80 Pa, and we can use the system to carry out the corona discharge test under the action of the electromagnetic field. The change laws of the threshold voltage of corona discharge induced by electromagnetic field are obtained. The experimental results show that when the temperature, humidity and other environmental factors keep unchanged, the normal discharge threshold is -590 V. When the pressure of the vacuum tube is 80 Pa, the negative high voltage of electrostatic discharge could release a voltage from 10 kV to 20 kV. The electromagnetic pulse acts on the inner of the vacuum tube in the charging area, the discharge threshold will reduce 90-180 V.
参考文献

[1] 祁树锋, 刘尚合, 刘红兵, 等. 静电放电引起2SC3356潜在失效的研究[J]. 强激光与粒子束, 2007, 19(4):638-642.(Qi Shufeng, Liu Shanghe, Liu Hongbing, et al. Latent failure of 2SC3356 caused by electrostatic discharge. High Power Laser and Particle Beams, 2007, 19(4): 638-642)

[2] 王立, 秦晓刚. 空间材料表面充放电性能试验评估方法研究[J]. 真空与低温, 2002, 8(2): 83-87.(Wang Li, Qin Xiaogang. Researches on the evaluating test methods of space material’s surface charging/discharging characteristics. Vacuum & Cryogenics, 2002, 8(2): 83-87)

[3] 王立. 介质材料的带电机理与表面结构的关系[J]. 真空与低温, 1995, 1(2): 66-68.(Wang Li. Relationship of the charging mechanism and the surface structure of the dielectric materials. Vacuum & Cryogenics, 1995, 1(2): 66-68)

[4] 闫小娟. 卫星介质充电机理和试验研究[D]. 北京:中国科学院空间科学与应用研究中心, 2008.(Yan Xiaojuan. Study on the charging mechanism of the dielectric materials on satellite and the experiments. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, 2008)

[5] 李小江. 空间等离子体环境对电子设备的充放电效应[D]. 西安: 西安电子科技大学, 2009: 35-36.(Li Xiaojiang. The charging-discharging effect of space plasma on the electronic equipment. Xi’an: Xidian University, 2009: 35-36)

[6] 师立勤. 低轨道航天器辐射环境和表面充电效应研究[D]. 合肥: 中国科学技术大学, 2011: 5-6.(Shi Liqin. Study on radiation environment and surface charging effect of LEO spacecraft. Hefei: University of Science and Technology of China, 2011: 5-6)

[7] 刘尚合, 武占成. 静电放电及危害防护[M]. 北京: 北京邮电大学出版社, 2004.(Liu Shanghe, Wu Zhancheng. Electrostatic discharge and hazard protection. Beijing: Beijing University of Posts and Telecommunications Press,2004)

[8] Lanzerotti L J, Breglia C, Maurer D W, et al. Studies of spacecraft charging on a geosynchronous telecommunications satellite[J]. Advances in Space Research, 1998, 22(1): 79-82.

[9] Rosen A. Spacecraft charging:Environment induced anomalies[R]. AIAA,1975.

[10] Lai S T. A survey of spacecraft charging events[R]. AIAA,1998.

[11] Mccollum M B, Neergaard L F. Spacecraft charging effects program at Marshall Space Flight Center[R]. AIAA, 1996.

[12] Whittlesey A, Garrett H. Avoiding problems caused by spacecraft on-orbit internal charging effects[M]. NASA-HDBK-4002, 1999.

[13] 王立. 空间静电放电传导干扰分析方法研究[J]. 中国空间科学技术2004, 51(5): 51-55.(Wang Li. Study on analysis method of space electrostatic discharge and conductive interference. Chinese Space Science and Technology, 2004, 51(5): 51-55)

[14] Bhattacharjee S, Dey I, Sen A, et al. Quasi-steady state interpulse plasmas[J]. Journal of Applied Physics, 2007,67(8): 101-113.

[15] Bhattacharjee S, Amemiya H, Yano Y. Plasma buildup by short-pulse high-power microwaves[J]. Journal of Applied Physics, 2010, 89(7): 3573-3579.

[16] Bhattacharjee S, Amemiya H. Microwave plasma in a multicusp circular waveguide with a dimension below cutoff[J]. Journal of Applied Physics, 1998, 37(6): 5742-5745.

[17] 陈仕修, 孙幼林, 夏长征, 等. 脉冲等离子体辐射微波机理的初步研究[J]. 强激光与粒子束, 2008, 20(3): 477-481.(Chen Shixiu, Sun Youlin, Xia Changzheng, et al. Preliminary study on mechanism of radiating microwave from pulsed plasma. High Power Laser and Particle Beams, 2008, 20(3): 477-481)

[18] 赵春晖, 张朝柱. 微波技术[M]. 北京: 高等教育出版社, 2007: 82-85.(Zhao Chunhui, Zhang Chaozhu. Microwave technology. Beijing:Higher Education Press, 2007: 82-85)

[19] 朱长青. 脉冲电场微型传感探头的研制[J]. 高电压技术, 2009, 35(8): 1940-1945.(Zhu Changqing. Development of a mini probe for testing pulsed E-field. High Voltage Engineering, 2009, 35(8): 1940-1945)

[20] 李庆, 王巧艳, 刘璞, 等. 线-板电晕放电电流体模拟方法研究[J]. 高电压技术, 2013, 39(10): 2351-2357.(Li Qing, Wang Qiaoyan, Liu Pu, et al. Electro-hydrodynamic simulation of wire-plate corona discharge. High Voltage Engineering, 2013, 39(10): 2351-2357)

[21] 章程, 邵涛, 许家雨, 等. 120 kV下常压空气纳秒脉冲电晕放电特性[J]. 强激光与粒子束, 2012, 24(3): 597-601.(Zhang Cheng, Shao Tao, Xu Jiayu, et al. Characteristic of nanosecond-pulsed corona discharge at 120 kV in atmospheric-pressure air. High Power Laser and Particle Beams, 2012, 24(3): 597-601)

[22] 朱利, 刘尚合, 张悦, 等. 高灵敏度电晕放电辐射信号探测方案[J]. 强激光与粒子束, 2014, 26: 033201.(Zhu Li, Liu Shanghe, Zhang Yue, et al. High sensitivity detection scheme for corona discharge radiation signal. High Power Laser and Particle Beams, 2014, 26: 033201)

曹鹤飞, 马策一, 刘浩, 蒙志成. 电磁场辐照诱发真空电晕放电模拟试验系统[J]. 强激光与粒子束, 2016, 28(8): 28083204. Cao Hefei, Ma Ceyi, Liu Hao, Meng Zhicheng. Simulation test system of vacuum corona discharge induced by electromagnetic field[J]. High Power Laser and Particle Beams, 2016, 28(8): 28083204.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!