光学学报, 2008, 28 (11): 2057, 网络出版: 2008-11-17   

介质/金属结构太赫兹空芯光纤的传输特性

Transmission Characteristics of Dielectric-Coated Metal Hollow Fiber for Terahertz Wave
作者单位
复旦大学通信科学与工程系, 上海 200433
摘要
理论分析了金属、介质/金属结构空芯光纤在THz波段的模式结构和传输特性。金属空芯光纤支持TE11模式, 介质/金属空芯光纤的介质膜厚在取最优值时支持HE11模式。对于波长为200 μm的太赫兹波, 内径为1 mm的两种空芯光纤, TE11和HE11模式的损耗分别为8.4 dB/m和2 dB/m。为优化介质/金属结构空芯光纤的传输性能, 分析了金属和介质材料的光学常数对衰减系数的影响。基于几种已发表的金属在太赫兹波段的光学常数, 计算结果表明铝是最好的选择; 初步测量结果显示, 在各种树脂材料中聚乙烯在THz波段吸收较小, 并且其折射率接近介质膜的最优值1.41, 为太赫兹波空芯光纤中介质膜材料的理想选择。
Abstract
Transmission characteristics and mode structure of both metal hollow fiber and dielectric-coated metal hollow fiber for terahertz wave are studied. Theoretical evaluation shows that the TE11 mode is dominant in metal hollow fiber and has high coupling efficiency when a linearly polarized light source is launched. HE11 mode is mainly supported in dielectric-coated metal hollow fiber with an optimum thickness for the dielectric film. The transmission loss of the TE11 and HE11 mode is 8.4 dB/m and 2 dB/m respectively at the wavelength of 200 μm for the hollow fibers with 1 mm bore size. The effects of optical constants of metals and dielectric materials on attenuation coefficient are also discussed to optimize the transmission performance of dielectric-coated metal hollow fiber. Aluminum is the best choice among the commonly-used metals based on published optical constants. The optimum value for the refractive index of the dielectric film is 1.41. According to the primary measuring results, polyethylene is a proper choice as its refractive index is 1.51 and it brings low absorption in terahertz waves.
参考文献

[1] 张显斌, 碇智文, 依藤弘昌 等. 高性能85 mm短腔光学参变振荡器的THz电磁波输出特性分析[J]. 光学学报, 2006, 26(4): 616~620

    Zhang Xianbin, T. Ikari, H. Ito et al.. Analysis of THz electromagnetic wave output character based on high performance 85 mm short cavity optical parametric oscillator[J]. Acta Optica Sinica, 2006, 26(4): 616~620

[2] 孙博, 姚建铨. 基于光学方法的太赫兹辐射源[J]. 中国激光, 2006, 33(10): 1349~1359

    Sun Bo, Yao Jianquan. Generation of terahertz wave based on optical methods[J]. Chin. J. Lasers, 2006, 33(10): 1349~1359

[3] Jun Yang, Shuangchen Ruan, Min Zhang. Real-time, continuous-wave terahertz imaging by a pyroelectric camera[J]. Chin. Opt. Lett., 2008, 6(1): 29~31

[4] . W. McGowan, G. Gallot, D. Grischkowsky. Propagation of ultrawide band short pulses of terahertz radiation through submillimeter-diameter circular waveguides[J]. Opt. Lett., 1999, 24(20): 1431-1433.

[5] . Gallot, S. P. Jamison, D. Grischkowsky et al.. Terahertz waveguides[J]. J. Opt. Soc. Am. B, 2000, 17(5): 851-863.

[6] . Hidaka, H. Minamide, S. Ichikawa et al.. Ferroelectric PVDF cladding terahertz waveguide[J]. J. Lightwave Technol., 2005, 23(8): 2469-2473.

[7] . A. Harrington, R. George, E. Mueller et al.. Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation[J]. Opt. Exp., 2004, 12(21): 5263-5268.

[8] . Ito, Y. Matsuura, H. Ito et al.. Flexible terahertz fiber optics with low bend-induced losses[J]. J. Opt. Soc. Am. B, 2007, 24(5): 1230-1235.

[9] . Bowden, J. A. Harrington, O. Mitrofanov. Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation[J]. Opt. Lett., 2007, 32(20): 2945-2947.

[10] M. Miyagi, S. Kawakami. Design theory of dielectric coated circular metallic waveguides for infrared Transmission[J]. J. Lightwave Technol., 1984, LT-2(2): 116~126

[11] . K. Nubling, J. A. Harrington. Launch conditions and mode coupling in hollow-glass waveguides[J]. Opt. Eng., 1998, 37(9): 2454-2458.

[12] . A. Ordal, R. J. Bell, M. R. Querry et al.. Optical properties of Au, Ni, and Pb at submillimeter wavelengths[J]. Appl. Opt., 1987, 26(4): 774-752.

[13] . A. Ordal, R. J. Bell, M. R. Querry et al.. Optical properties of Al, Fe,Ti, Ta, W, and Mo at submillimeter wavelengths[J]. Appl. Opt., 1988, 27(6): 1203-1209.

汤晓黎, 石艺尉. 介质/金属结构太赫兹空芯光纤的传输特性[J]. 光学学报, 2008, 28(11): 2057. Tang Xiaoli, Shi Yiwei. Transmission Characteristics of Dielectric-Coated Metal Hollow Fiber for Terahertz Wave[J]. Acta Optica Sinica, 2008, 28(11): 2057.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!