Frontiers of Optoelectronics, 2013, 6 (3): 346, 网络出版: 2014-03-03  

Band gap properties of 2D square lattice photonic crystal composed of rectangular cells

Band gap properties of 2D square lattice photonic crystal composed of rectangular cells
作者单位
1 Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
2 Department of Electronics, Tabriz Branch, Islamic Azad University, Tabriz, Iran
摘要
Abstract
In this paper, the photonic band gap (PBG) properties of two dimensional (2D) square lattice photonic crystal structures composed of rectangular cells were studied. The effect of refractive index, rectangles length and the ratio of width to length of the rectangles on the PBG properties of the structure with different configurations was investigated. It is found that the density of gaps in both modes (transverse electric (TE) and transverse magnetic (TM)) is high for structure composed of rectangular dielectric rods in air, while the density of the gaps is very low for structure composed of rectangular air pores in dielectric material.
参考文献

[1] Sakoda K. Optical Properties of Photonic Crystals. Berlin: Springer-Verlag, 2001

[2] Alipour-Banaei H, Mehdizadeh F. A proposal for anti-UVB filter based on one-dimensional photonic crystal structure. Digest Journal of Nanomaterials and Biostructures, 2012, 7(1): 361-371

[3] Alipour-Banaei H, Mehdizadeh F. Significant role of photonic crystal resonant cavities in WDM and DWDM communication tunable filters. Optik-International Journal for Light and Electron Optics, 2012, doi: 10.1016/j.ijleo.2012.07.029 (in press)

[4] Alipour-Banaei H, Mehdizadeh F, Hassangholizadeh-Kashtiban M. Important effect of defect parameters on the characteristics of Thue-Morse photonic crystal filters. Advances in OptoElectronics, 2013: 1-5

[5] Robinson S, Nakkeeran R. Investigation on two dimensional photonic crystal resonant cavity based bandpass filter. Optik-International Journal for Light and Electron Optics, 2012, 123(5): 451-457

[6] Mehdizadeh F, Alipour-Banaei H, Daie-Kuzekanani Z. All optical multi reflection structure based on one dimensional photonic crystals for WDM communication systems. Optoelectronics and Advanced Materials-Rapid Communications, 2012, 6: 527-531

[7] Ahmadi Tameh T, Isfahani B M, Granpayeh N, Javan A M. Improving the performance of all-optical switching based on nonlinear photonic Crystal microring resonators. AEü-International Journal of Electronics and Communications, 2011, 65(4): 281-287

[8] Bazargani H P. Proposal for a 4-channel all optical demultiplexer using 12-fold photonic quasicrystal. Optics Communications, 2012, 285(7): 1848-1853

[9] Rostami A. Banei H A, Nazari F, Bahrami A. An ultra compact photonic crystal wavelength division demultiplexer using resonance cavities in a modified Y-branch structure. Optik-International Journal for Light and Electron Optics, 2011, 122(16): 1481-1485

[10] Cheng S C, Wang J Z, Chen L W, Wang C C. Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units. Optik-International Journal for Light and Electron Optics, 2012, 123(21): 1928-1933

[11] Joannopoulos J D, Mead R D, Winn J N. Photonic Crystals: Molding the Flow of Light. Princeton: Princeton University Press, 1995

[12] Matthews A F, Mingaleev S F, Kivshar Y S. Band-gap engineering and defect modes in photonic crystals with rotated hexagonal holes. Laser Physics, 2004, 14(5): 631-634

[13] Kalra Y, Sinha R K. Photonic band gap engineering in 2D photonic crystals. Pramana, 2006, 67(6): 1155-1164

[14] Liu W L, Yang T J. Engineering the bandgap of a two-dimensional photonic crystal with slender dielectric veins. Physics Letters A, 2007, 369(5-6): 518-523

[15] Rezaei B, Kalafi M. Engineering absolute band gap in anisotropic hexagonal photonic crystals. Optics Communications, 2006, 266(1): 159-163

[16] Liu W L, Liou Y Y, Wei J C, Yang T J. Band gap studies of 2D photonic crystals with hybrid scatterers. Physica B, Condensed Matter, 2009, 404(21): 4237-4242

[17] Wu Z H, Xie K, Yang H J. Band gap properties of two-dimensional photonic crystals with rhombic lattice. Optik-International Journal for Light and Electron Optics, 2012, 123(6): 534-536

[18] Liu D, Gao Y H, Gao D S, Han X Y. Photonic band gaps in twodimensional photonic crystals of core-shell-type dielectric nanorod heterostructures. Optics Communications, 2012, 285(7): 1988-1992

[19] Mehdizadeh F, Alipour-Banaei H. Bandgap management in twodimensional photonic crystal Thue-Morse structures. Journal of Optical Communications, 2013, 34(1): 61-65

[20] Johnson S G, Joannopoulos J D. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 2001, 8(3): 173-190

Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Frontiers of Optoelectronics, 2013, 6(3): 346. Somaye SERAJMOHAMMADI, Hamed ALIPOUR-BANAEI. Band gap properties of 2D square lattice photonic crystal composed of rectangular cells[J]. Frontiers of Optoelectronics, 2013, 6(3): 346.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!