发光学报, 2019, 40 (1): 30, 网络出版: 2019-01-19   

X射线激发深层肌体温度传感材料La2O2S∶Yb3+,Er3+的测温性质研究

Thermometric Properties of Deep Tissue Temperature Sensing Material La2O2S∶Yb3+,Er3+ Excited by X-ray
作者单位
河北大学物理科学与技术学院 河北省光电信息材料重点实验室 新能源光电器件国家地方联合工程实验室, 河北 保定 071002
摘要
Yb3+、Er3+共掺杂上转换发光材料能被红外光激发, 可用于肌体内部温度测量, 但上转换材料效率较低, 无法实现较深组织温度探测。考虑到Er3+能级可被多种光源布居, 较好肌体穿透性的X射线无疑是理想的激发源。本文首次报道了一种新型的深层肌体温度传感材料La2O2S∶Yb3+,Er3+。数据表明, X射线激发下, 在不同温度下的两个绿光发射强度比符合玻尔兹曼分布, 最高测温灵敏度达到了0.011 5 K-1。我们相信Yb3+、Er3+共掺的La2O2S是可以应用于临床的理想测温材料。
Abstract
Yb3+, Er3+ co-doped up-conversion luminescent materials can be used to measure the internal temperature of tissue under infrared light excitation, but the lower efficiency of up-conversion materials makes it impossible to detect deep tissue temperature. Considering that Er3+ energy levels can be populated by various light sources, X-ray is undoubtedly an ideal excitation source with better penetration. In this article, we first reported a novel deep tissue temperature sensing material La2O2S∶Yb3+,Er3+. The data show that the fluorescence intensity ratio of the two green levels at different temperatures conforms to Boltzmann distribution under X-ray excitation, and the maximum sensor sensitivity is 0.011 5 K-1. We believe that Yb3+, Er3+ co-doped La2O2S can be used as an ideal temperature measuring material for clinical application.
参考文献

[1] 吴中立,吴红梅,姚震,等. GdNbO4∶Er3+/Yb3+荧光粉的上转换发光与温度特性 [J]. 发光学报, 2017,38(9): 1129-1135.

    WU Z L,WU H M,YAO Z,et al.. Upconversion luminescence and temperature characteristics of GdNbO4∶Er3+/Yb3+ phosphors [J]. Chin. J. Lumin., 2017,38(9):1129-1135. (in Chinese)

[2] 林杨杨,陈铠炀,唐霞艳,等. Er3+/Yb3+共掺杂氧氟硼硅酸盐微晶玻璃绿色上转换发光的温度特性 [J]. 发光学报, 2015,36(9):1001-1005.

    LIN Y Y,CHEN K Y,TANG X Z,et al.. Temperature characteristic of green upconversion luminescence in Er3+/Yb3+ codoped oxyfluoride borosilicate glass ceramics [J]. Chin. J. Lumin., 2015,36(9):1001-1005. (in Chinese)

[3] LI D Y,TIAN L L,HUANG Z,et al.. Optical temperature sensor based on infrared excited green upconversion emission in hexagonal phase NaLuF4∶Yb3+/Er3+ nanorods [J]. J. Nanosci. Nanotechnol., 2016,16(4):3641-3645.

[4] ZHENG H,CHEN B J,YU H Q,et al.. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures [J]. J. Colloid Interface Sci., 2014,420:27-34.

[5] SAVCHUK O A,CARVAJAL J J,CASCALES C,et al.. Benefits of silica core-shell structures on the temperature sensing properties of Er,Yb∶GdVO4 up-conversion nanoparticles [J]. ACS Appl. Mater. Interfaces, 2016,8(11):7266-7273.

[6] ARAI K,HONDA N,MORI T,et al.. Sensitivity-enhancing scheme of a polarimetric heterodyne sensor using a birefringent fiber loop [J]. Opt. Lett., 1990,15(19):1103-1105.

[7] ZHANG W W,WANG G Y,BAXTER G W,et al.. Methods for broadband spectral analysis:intrinsic fluorescence temperature sensing as an example [J]. Appl. Spectrosc., 2017,71(6):1256-1262.

[8] GAO Y,HUANG F,LIN H,et al.. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states [J]. Adv. Funct. Mater., 2016,26(18):3139-3145.

[9] DONG B,HUA R N,CAO B S,et al.. Size dependence of the upconverted luminescence of NaYF4∶Er,Yb microspheres for use in ratiometric thermometry [J]. Phys. Chem. Chem. Phys., 2014,16(37):20009-20012.

[10] FANG H W,WEI X T,ZHOU S S,et al.. Terbium and holmium codoped yttrium phosphate as non-contact optical temperature sensors [J]. RSC Adv., 2017,7(17):10200-10205.

[11] VETRONE F,NACCACHE R,ZAMARRN A,et al.. Temperature sensing using fluorescent nanothermometers [J]. ACS Nano, 2010,4(6):3254-3258.

[12] SINGH S K,KUMAR K,RAI S B. Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry [J]. Sens. Actuators A: Phys., 2009,149(1):16-20.

[13] JIANG S,ZENG P,LIAO L Q,et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4∶Yb3+/Er3+ nanocrystals [J]. J. Alloys Compd., 2014,617:538-541.

[14] DUBEY A,SONI A K,KUMARI A,et al.. Enhanced green upconversion emission in NaYF4∶Er3+/Yb3+/Li+ phosphors for optical thermometry [J]. J. Alloys Compd., 2017,693:194-200.

[15] MUKHOPADHYAY L,RAI V K,BOKOLIA R,et al.. 980 nm excited Er3+/Yb3+/Li+/Ba2+∶NaZnPO4 upconverting phosphors in optical thermometry [J]. J. Lumin., 2017,187:368-377.

[16] YANG X X,FU Z L,YANG Y M,et al.. Optical temperature sensing behavior of high-efficiency upconversion:Er3+-Yb3+ Co-doped NaY(MoO4)2 phosphor [J]. J. Am. Ceram. Soc., 2015,98(8):2595-2600.

[17] MADSEN S J,SUN C H,TROMBERG B J,et al.. Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids [J]. J. Neurooncol., 2003,62(3):243-250.

[18] ORION E,MATZ H,WOLFR. Interferons:unapproved uses,dosages,or indications [J]. Clin. Dermatol., 2002,20(5):493-504.

[19] YANG Y M,MI C,JIAO F Y,et al.. A novel multifunctional upconversion phosphor:Yb3+/Er3+ codoped La2S3 [J]. J. Am. Ceram. Soc., 2014,97(6):1769-1775.

[20] LIU Y F,CHEN W,WANG S P,et al.. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation [J]. Appl. Phys. Lett., 2008,92(4):043901-1-3.

[21] RAHMAN W N,BISHARA N,ACKERLY T,et al.. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy [J]. Nanomed.: Nanotechnol. Biol. Med., 2009,5(2):136-142.

[22] CARTER J D,CHENG N N,QU Y Q,et al.. Nanoscale energy deposition by X-ray absorbing nanostructures [J]. J. Phys. Chem. B, 2007,111(40):11622-11625.

[23] BRIXNER L H. New X-ray phosphors [J]. Mater. Chem. Phys., 1987,16(3-4):253-281.

[24] CHEN H Y,PATRICK A L,YANG Z Q,et al.. High-resolution chemical imaging through tissue with an X-ray scintillator sensor [J]. Anal. Chem., 2011,83(13):5045-5049.

[25] YANG Y M,MI C. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3∶Yb3+,Er3+ phosphor [C]. International Conference on Optical Instruments and Technology:Optical Sensors and Applications,Beijing, 2013.

[26] LIU G G,FU L L,GAO Z Y,et al.. Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3,YAG and LaAlO3 phosphors [J]. RSC Adv., 2015,5(64):51820-51827.

[27] YANG Y M,MI C,YU F,et al.. Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor [J]. Ceram. Int., 2013,40(7):9875-9880.

[28] LI X D,SONG Y J,YANG Y M,et al.. Structure and optical thermometry characterization of Er3+/Yb3+ co-doped BaGd2CuO5 [J]. J. Nanosci. Nanotechnol., 2016,16(4):3542-3546.

[29] 刘延洲,杨艳民,郭彦明,等. Er3+∶Yb3+共掺杂BaGd2ZnO5纳米晶体上转换光学温度传感 [J]. 光谱学与光谱分析, 2015,35(2):329-333.

    LIU Y Z,YANG Y M,GUO Y M,et al.. Er3+∶Yb3+ Co-doped nanocrystals BaGd2 ZnO5 of Up-conversion optical temperature sensing [J]. Spectrosc. Spectr. Anal., 2015,35(2):329-333. (in Chinese)

[30] MAURICE E,MONNOM G,DUSSARDIER B,et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors [J]. Appl. Opt., 1995,34(34):8019-8025.

[31] SHINN M D,SIBLEY W A,DREXHAGE M G,et al.. Optical transitions of Er3+ ions in fluorozirconate glass [J]. Phys. Rev. B, 1983,27(11):6635-6648.

[32] WADE S A,COLLINS S F,BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing [J]. J. Appl. Phys., 2003,94(8):4743-4756.

[33] MACIEL G S,MENEZES L D,GOMES A S L,et al.. Temperature sensor based on frequency upconversion in Er3+ -doped fluoroindate glass [J]. IEEE Photon. Technol. Lett., 1995,7(12):1474-1476.

[34] CHEN Y,CHEN G H,LIU X Y,et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass-ceramics [J]. J. Lumin., 2018,195:314-320.

[35] LI X M,CAO J K,WEI Y L,et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+ -doped transparent Sr2YbF7 glass-ceramics [J]. J. Am. Ceram. Soc., 2015,98(12):3824-3830.

[36] YU H,LI S,QI Y S,et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix [J]. J. Lumin., 2018,194:433-439.

[37] CAI J J,WEI X T,HU F F,et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2∶Yb3+/Er3+ nanocrystals [J]. Ceram. Int., 2016,42(12):13990-13995.

[38] CAO J K,CHEN W P,XU D K,et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics [J]. J. Lumin., 2018,194:219-224.

[39] CAO J K,HU F F,CHEN L P,et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics [J]. J. Alloys Compd., 2017,693:326-331.

[40] LI X M,CAO J K,HU F F,et al.. Transparent Na5Gd9F32∶Er3+ glass-ceramics:enhanced up-conversion luminescence and applications in optical temperature sensors [J]. RSC Adv., 2017,7(56):35147-35153.

[41] HU F F,CAO J K,WEI X T,et al.. Self-crystallized novel transparent Na5Yb9F32∶Er3+ glass-ceramics for optical thermometry and spectral conversion [J]. J. Alloys Compd., 2017,722:669-675.

[42] ZOU Z S,WU T,LU H,et al.. Structure,luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals [J]. RSC Adv., 2018,8(14):7679-7686.

[43] HU F F,CAO J K,WEI X T,et al.. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion [J]. J. Mater. Chem. C, 2016,4(42):9976-9985.

[44] CHEN D Q,LIU S,LI X Y,et al.. Gd-based oxyfluoride glass ceramics:phase transformation,optical spectroscopy and upconverting temperature sensing [J]. J. Eur. Ceram. Soc., 2017,37(13):4083-4094.

[45] CHEN D Q,WAN Z Y,ZHOU Y,et al.. Bulk glass ceramics containing Yb3+/Er3+∶β-NaGdF4 nanocrystals:phase-separation-controlled crystallization,optical spectroscopy and upconverted temperature sensing behavior [J]. J. Alloys Compd., 2015,638:21-28.

[46] LI C R,DONG B,LI S F,et al.. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor [J]. Chem. Phys. Lett., 2007,443(4-6):426-429.

[47] RAKOV N,MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+∶Yb3+ co-doped yttrium silicate powders [J]. Sens. Actuators B:Chem., 2012,164(1):96-100.

[48] 杨艳民,焦福运,苏红新,等. Yb3+/Er3+共掺BaGd2ZnO5上转换发光动力学过程的研究 [J]. 光谱学与光谱分析, 2012, 2(10):2637-2641.

    YANG Y M,JIAO F Y,SU H X,et al.. Preparation and up-conversion luminescence dynamic process of Yb3+/Er3+ co-doped BaGd2ZnO5 [J]. Spectrosc. Spectr. Anal., 2012,32(10):2637-2641. (in Chinese)

[49] JUDD B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962,127(3):750-761.

[50] OFELT G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962,37(3):511-520.

[51] JRGENSEN C K,JUDD B R. Hypersensitive pseudoquadrupole transitions in lanthanides [J]. Mol. Phys., 1964,8(3):281-290.

汪欣, 李晓晓, 李天义, 杨艳民. X射线激发深层肌体温度传感材料La2O2S∶Yb3+,Er3+的测温性质研究[J]. 发光学报, 2019, 40(1): 30. WANG Xin, LI Xiao-xiao, LI Tian-yi, YANG Yan-min. Thermometric Properties of Deep Tissue Temperature Sensing Material La2O2S∶Yb3+,Er3+ Excited by X-ray[J]. Chinese Journal of Luminescence, 2019, 40(1): 30.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!