Photonics Research, 2021, 9 (2): 02000202, Published Online: Jan. 29, 2021   

Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm Download: 630次

Author Affiliations
1 Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
2 The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
3 School of Electrical and Electronics Engineering, Nanyang Technological University, Singapore, Singapore
4 CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
5 e-mail: hui.hui@ia.ac.cn
6 e-mail: puxiang.lai@polyu.edu.hk
Copy Citation Text

Huanhao Li, Chi Man Woo, Tianting Zhong, Zhipeng Yu, Yunqi Luo, Yuanjin Zheng, Xin Yang, Hui Hui, Puxiang Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 2021, 9(2): 02000202.

References

[1] I. M. Vellekoop, A. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 2007, 32: 2309-2311.

[2] E. N. Leith, J. Upatnieks. Holographic imagery through diffusing media. J. Opt. Soc. Am., 1966, 56: 523.

[3] Z. Yaqoob, D. Psaltis, M. S. Feld, C. Yang. Optical phase conjugation for turbidity suppression in biological samples. Nat. Photonics, 2008, 2: 110-115.

[4] Z. Yu, J. Huangfu, F. Zhao, M. Xia, X. Wu, X. Niu, D. Li, P. Lai, D. Wang. Time-reversed magnetically controlled perturbation (TRMCP) optical focusing inside scattering media. Sci. Rep., 2018, 8: 2927.

[5] Z. Yu, M. Xia, H. Li, T. Zhong, F. Zhao, H. Deng, Z. Li, D. Li, D. Wang, P. Lai. Implementation of digital optical phase conjugation with embedded calibration and phase rectification. Sci. Rep., 2019, 9: 1537.

[6] Y. Liu, P. Lai, C. Ma, X. Xu, A. A. Grabar, L. V. Wang. Optical focusing deep inside dynamic scattering media with near-infrared time-reversed ultrasonically encoded (TRUE) light. Nat. Commun., 2015, 6: 5904.

[7] S. Popoff, G. Lerosey, R. Carminati, M. Fink, A. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 2010, 104: 100601.

[8] P. Lai, L. Wang, J. W. Tay, L. V. Wang. Photoacoustically guided wavefront shaping (PAWS) for enhanced optical focusing in scattering media. Nat. Photonics, 2015, 9: 126-132.

[9] Y. Luo, S. Yan, H. Li, P. Lai, Y. Zheng. Focusing light through scattering media by reinforced hybrid algorithms. APL Photon., 2020, 5: 016109.

[10] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 2010, 1: 81.

[11] S. Ohayon, A. Caravaca-Aguirre, R. Piestun, J. J. DiCarlo. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express, 2018, 9: 1492-1509.

[12] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 2015, 23: 12189-12206.

[13] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photonics, 2012, 6: 283-292.

[14] Z. Li, Z. Yu, H. Hui, H. Li, T. Zhong, H. Liu, P. Lai. Edge enhancement through scattering media enabled by optical wavefront shaping. Photon. Res., 2020, 8: 954-962.

[15] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photonics, 2015, 9: 563-571.

[16] H. Ruan, T. Haber, Y. Liu, J. Brake, J. Kim, J. M. Berlin, C. Yang. Focusing light inside scattering media with magnetic-particle-guided wavefront shaping. Optica, 2017, 4: 1337-1343.

[17] N. Takai, T. Asakura. Statistical properties of laser speckles produced under illumination from a multimode optical fiber. J. Opt. Soc. Am. A, 1985, 2: 1282-1290.

[18] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 2015, 9: 529-535.

[19] Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, W. Choi. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 2012, 109: 203901.

[20] I. N. Papadopoulos, S. Farahi, C. Moser, D. Psaltis. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 2013, 4: 260-270.

[21] J. Yoon, M. Lee, K. Lee, N. Kim, J. M. Kim, J. Park, H. Yu, C. Choi, W. Do Heo, Y. Park. Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Sci. Rep., 2015, 5: 13289.

[22] A. M. Aravanis, L.-P. Wang, F. Zhang, L. A. Meltzer, M. Z. Mogri, M. B. Schneider, K. Deisseroth. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng., 2007, 4: S143-S156.

[23] O. Tzang, A. M. Caravaca-Aguirre, K. Wagner, R. Piestun. Adaptive wavefront shaping for controlling nonlinear multimode interactions in optical fibres. Nat. Photonics, 2018, 12: 368-374.

[24] T. Zhong, Z. Yu, H. Li, Z. Li, P. Lai. Active wavefront shaping for controlling and improving multimode fiber sensor. J. Innov. Opt. Health Sci., 2019, 12: 1942007.

[25] J. Yang, L. Li, J. Li, Z. Cheng, Y. Liu, L. V. Wang. Fighting against fast speckle decorrelation for light focusing inside live tissue by photon frequency shifting. ACS Photon., 2020, 7: 837-844.

[26] I. M. Vellekoop, A. Mosk. Phase control algorithms for focusing light through turbid media. Opt. Commun., 2008, 281: 3071-3080.

[27] J. Thompson, B. Hokr, V. Yakovlev. Optimization of focusing through scattering media using the continuous sequential algorithm. J. Mod. Opt., 2016, 63: 80-84.

[28] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express, 2012, 20: 4840-4849.

[29] D. Wu, J. Luo, Z. Li, Y. Shen. A thorough study on genetic algorithms in feedback-based wavefront shaping. J. Innov. Opt. Health Sci., 2019, 12: 1942004.

[30] B. R. Anderson, P. Price, R. Gunawidjaja, H. Eilers. Microgenetic optimization algorithm for optimal wavefront shaping. Appl. Opt., 2015, 54: 1485-1491.

[31] H.-L. Huang, Z.-Y. Chen, C.-Z. Sun, J.-L. Liu, J.-X. Pu. Light focusing through scattering media by particle swarm optimization. Chin. Phys. Lett., 2015, 32: 104202.

[32] B.-Q. Li, B. Zhang, Q. Feng, X.-M. Cheng, Y.-C. Ding, Q. Liu. Shaping the wavefront of incident light with a strong robustness particle swarm optimization algorithm. Chin. Phys. Lett., 2018, 35: 124201.

[33] Z. Fayyaz, N. Mohammadian, M. Reza Rahimi Tabar, R. Manwar, K. Avanaki. A comparative study of optimization algorithms for wavefront shaping. J. Innov. Opt. Health Sci. Sci., 2019, 12: 1942002.

[34] L. Fang, H. Zuo, Z. Yang, X. Zhang, J. Du, L. Pang. Binary wavefront optimization using a simulated annealing algorithm. Appl. Opt., 2018, 57: 1744-1751.

[35] Z. Fayyaz, F. Salimi, N. Mohammadian, A. Fatima, M. R. R. Tabar, M. R. Avanaki. Wavefront shaping using simulated annealing algorithm for focusing light through turbid media. Proc. SPIE, 2018, 10494: 104946M.

[36] S. Cheng, H. Li, Y. Luo, Y. Zheng, P. Lai. Artificial intelligence-assisted light control and computational imaging through scattering media. J. Innov. Opt. Health Sci., 2019, 12: 1930006.

[37] R. Horisaki, R. Takagi, J. Tanida. Learning-based focusing through scattering media. Appl. Opt., 2017, 56: 4358-4362.

[38] A. Turpin, I. Vishniakou, J. D. Seelig. Light scattering control in transmission and reflection with neural networks. Opt. Express, 2018, 26: 30911-30929.

[39] GoodmanJ. W., Speckle Phenomena in Optics: Theory and Applications (Roberts and Company, 2007).

[40] D. Akbulut, T. J. Huisman, E. G. van Putten, W. L. Vos, A. P. Mosk. Focusing light through random photonic media by binary amplitude modulation. Opt. Express, 2011, 19: 4017-4029.

[41] Y. Shen, Y. Liu, C. Ma, L. V. Wang. Sub-Nyquist sampling boosts targeted light transport through opaque scattering media. Optica, 2017, 4: 97-102.

[42] H. Yu, K. Lee, Y. Park. Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Opt. Express, 2017, 25: 8036-8047.

Huanhao Li, Chi Man Woo, Tianting Zhong, Zhipeng Yu, Yunqi Luo, Yuanjin Zheng, Xin Yang, Hui Hui, Puxiang Lai. Adaptive optical focusing through perturbed scattering media with a dynamic mutation algorithm[J]. Photonics Research, 2021, 9(2): 02000202.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!