激光与光电子学进展, 2017, 54 (5): 050102, 网络出版: 2017-05-03   

基于黑碳仪模型的含碳气溶胶来源解析 下载: 501次

Source Apportionment of Carbonaceous Aerosol Based on Aethalometer Model
作者单位
1 浙江大学能源清洁利用国家重点实验室, 浙江 杭州 310027
2 杭州市环境监测中心站, 浙江 杭州 310007
摘要
基于不同来源含碳气溶胶具有不同光学吸收特性的原理, 采用黑碳仪模型对杭州市含碳气溶胶进行来源解析。结合气溶胶飞行时间质谱仪和黑碳仪数据, 对黑碳仪模型参数进行校正。通过分析2015年杭州市朝晖环境监测站点的黑碳仪数据, 解析化石燃料和生物质燃料的燃烧对朝晖地区含碳气溶胶的贡献率及其变化规律。结果表明, 2015年化石燃料燃烧对朝晖地区含碳气溶胶的年均贡献值为15.4 μg/m3, 年均贡献率为71.8%; 生物质燃料对含碳气溶胶的月均贡献率为20%~38%, 7月份贡献率最小, 12月份贡献率最大, 各月份的贡献率存在明显阶梯性变化。含碳气溶胶吸收指数没有体现出本地早晚高峰现象, 该现象可能是由于外地传输引起的。上述研究为识别杭州市能源消费结构和大气治理提供一定的理论与实验支持。
Abstract
The source apportionment of carbonaceous aerosol in Hangzhou is carried out with aethalometer model, and the study is based on different light absorption properties of aerosols from different origins. Combined with aerosol time-of-flight mass spectrometer and data measured by aethalometer, the parameters of aethalometer model are corrected. The aethalometer data from Zhaohui environmental monitoring site of Hangzhou in 2015 is analyzed, and the contribution rates of biomass and fossil fuel burning to carbonaceous aerosol in Zhaohui are analyzed. The results show that the annual concentration of carbonaceous aerosol originating from fossil fuel in 2015 is 15.4 μg/m3, and the annual concentration rate is 71.8%. The monthly contribution rate of biomass burning to carbonaceous aerosol is 20%-38%. The minimum concentration rate appears in July while the maximum concentration rate appears in December, and the monthly data shows a gradient transformation. Traffic rush hours exhibit no effect on the mean diurnal pattern of absorption exponent, which means the carbonaceous aerosol may be introduced by long-range transport. The above results build the foundation for identification of Hangzhou energy consumption structure and alleviating air pollution.
参考文献

[1] Zhang Y L, Huang R J, El Haddad I, et al. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013[J]. Atmospheric Chemistry & Physics, 2014, 14(19): 26257-26296.

[2] Turpin B J, Huntzicker J J. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS[J]. Atmospheric Environment, 1995, 29(23): 3527-3544.

[3] Watson J G. 2002 critical review-visibility: science and regulation[J]. Journal of the Air & Waste Management Association, 2002, 52(6): 628-713.

[4] Bond T C, Doherty S J, Fahey D W, et al. Bounding the role of black carbon in the climate system: a scientific assessment[J]. Journal of Geophysical Research Atmospheres, 2013, 118(11): 5380-5552.

[5] Sandradewi J, Prévt A, Weingartner E, et al. A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength aethalometer[J]. Atmospheric Environment, 2008, 42(1): 101-112.

[6] Sandradewi J, Prévt A S H, Szidat S, et al. Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter[J]. Environmental Science & Technology, 2008, 42(9): 3316-3323.

[7] Favez O, Cachier H, Sciare J, et al. Evidence for a significant contribution of wood burning aerosols to PM2.5 during the winter season in Paris, France[J]. Atmospheric Environment, 2009, 43(45): 3640-3644.

[8] Massabò D, Caponi L, Bernardoni V, et al. Multi-wavelength optical determination of black and brown carbon in atmospheric aerosols[J]. Atmospheric Environment, 2015, 108: 1-12.

[9] Harrison R M, Beddows D C, Jones A M, et al. An evaluation of some issues regarding the use of aethalometers to measure woodsmoke concentrations[J]. Atmospheric Environment, 2013, 80(12): 540-548.

[10] Herich H, Hueglin C, Buchmann B. A 2.5 year′s source apportionment study of black carbon from wood burning and fossil fuel combustion at urban and rural sites in Switzerland[J]. Atmospheric Measurement Techniques, 2011, 4(7): 1409-1420.

[11] Kirchstetter T W, Novakov T, Hobbs P V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon[J]. Journal of Geophysical Research Atmospheres, 2004, 109(21): 1729-1742.

[12] Sciare J, d′Argouges O, Sarda-Estève R, et al. Large contribution of water-insoluble secondary organic aerosols in the region of Paris (France) during wintertime[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D22): D22203.

[13] 陈玲红, 蒋一奇, 孙洋洋, 等. 不可溶性固态内核霾滴的散射及吸收特性分析[J]. 中国激光, 2015, 42(3): 0308001.

    Chen Linghong, Jiang Yiqi, Sun Yangyang, et al. Analysis of absorption and scattering properties of water host haze droplet with insoluble solid inclusion[J]. Chinese J Lasers, 2015, 42(3): 0308001.

[14] 徐 博, 黄印博, 范承玉, 等. 吸湿性均匀混合气溶胶粒子等效吸收系数计算分析[J]. 光学学报, 2013, 33(1): 0101001.

    Xu Bo, Huang Yinbo, Fan Chengyu, et al. Calculation of equivalent absorption coefficient of uniformly mixed hygroscopic aerosol particles[J]. Acta Optica Sinica, 2013, 33(1): 0101001.

[15] 吴金雷, 张金碧, 张 莉, 等. 大气颗粒物近前向光散射特性研究[J]. 光学学报, 2016, 36(5): 0529001.

    Wu Jinlei, Zhang Jinbi, Zhang Li, et al. Near forward light scattering characteristics of airborne particles[J]. Acta Optica Sinica, 2016, 36(5): 0529001.

[16] Moosmüller H, Chakrabarty R K, Arnott W P. Aerosol light absorption and its measurement: a review[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2009, 110(11): 844-878.

[17] Drinovec L, Mocˇnik G, Zotter P, et al. The "dual-spot" aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation[J]. Atmospheric Measurement Techniques, 2015, 8(5): 1965-1979.

[18] Aki V, Timo M, Risto H, et al. A simple procedure for correcting loading effects of aethalometer data[J]. Air & Waste, 2007, 57(10): 1214-1222.

[19] Weingartner E, Saathoff H, Schnaiter M, et al. Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers[J]. Journal of Aerosol Science, 2003, 34(10): 1445-1463.

[20] Fuller G W, Tremper A H, Baker T D, et al. Contribution of wood burning to PM10 in London[J]. Atmospheric Environment, 2014, 87(24): 87-94.

[21] Gyawali M, Arnott W P, Lewis K, et al. In situ aerosol optics in Reno, NV, USA during and after the summer 2008 California wildfires and the influence of absorbing and non-absorbing organic coatings on spectral light absorption[J]. Atmospheric Chemistry & Physics, 2009, 9(20): 8007-8015.

[22] 沈建东, 焦 荔, 徐 昶, 等. 杭州市大气细颗粒物分粒径来源解析[J]. 中国科学院大学学报, 2014, 31(3): 367-373.

    Shen Jiandong, Jiao Li, Xu Chang, et al. Source apportionment of size-resolved ambient fine particulate matter in Hangzhou[J]. Journal of University of Chinese Academy of Sciences, 2014, 31(3): 367-373.

颜明明, 吴建, 沈建东, 周剑武, 陈玲红. 基于黑碳仪模型的含碳气溶胶来源解析[J]. 激光与光电子学进展, 2017, 54(5): 050102. Yan Mingming, Wu Jian, Shen Jiandong, Zhou Jianwu, Chen Linghong. Source Apportionment of Carbonaceous Aerosol Based on Aethalometer Model[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050102.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!