光学学报, 2013, 33 (6): 0604001, 网络出版: 2013-05-31   

复燃对固体火箭尾焰红外辐射特性的影响

Influence on Afterburning on Infrared Radiation of Solid Rocket Exhaust Plume
作者单位
合肥电子工程学院脉冲功率激光技术国家重点实验室, 安徽 合肥 230037
摘要
为了定量研究复燃对固体火箭尾焰红外辐射特性的影响,建立了一个可以计算固体火箭尾焰复燃流场和红外辐射特性的模型:使用Fluent软件计算固体火箭尾焰复燃流场;分别使用窄带模型和米氏散射理论计算气体和Al2O3的辐射参数;使用有限体积法(FVM)求解尾焰中的辐射传输方程(RTE)。利用上述模型,分别研究了复燃对无Al2O3粒子和含有Al2O3粒子两种固体火箭尾焰红外辐射特性的影响,并分析了对二者影响差异的原因。结果表明,复燃使无粒子尾焰光谱辐射强度增幅显著,在2.5~3.0 μm和4.2~4.7 μm两个主要辐射波段平均辐射强度的增加比例分别达到了46.4%和58.4%;复燃使含粒子尾焰光谱辐射强度增幅较小,在2.5~3.0 μm和4.2~4.7 μm两个波段平均辐射强度的增加比例分别为7.7%和8.4%。初步分析认为,复燃使两种尾焰温度增幅不同导致了辐射增幅的差异。
Abstract
Aimed at studying the influence of afterburning on the infrared radiation of a solid rocket exhaust plume, a model which can calculate the afterburning flow field and infrared radiation of a solid rocket exhaust plume is founded. The Fluent software is used to calculate the afterburning flow field of a solid rocket exhaust plume. Then, a narrow band model and the Mie scattering theory are employed to calculate the radiation parameters of gas and Al2O3. The finite volume method (FVM) is used to solve the radiation transfer equation (RTE). Based on this model, the influences of afterburning on the infrared radiation of solid rocket exhaust plumes both without and with Al2O3 are studied respectively, and the cause of the difference of the influence degree between the two cases is analyzed. Results show that, afterburning can enhance the infrared spectral radiation of the plume without Al2O3 greatly, and the average increase radio of the two domain radiation band of 2.5~3.0 μm and 4.2~4.7 μm achieve 46.4% and 58.4% respectively. Besides, the radiation increment of plume with Al2O3 is smaller, and the average increase proportions of the two radiation bands 2.5~3.0 μm and 4.2~4.7 μm achieve 7.7% and 8.4% respectively. It is considered that the difference of infrared radiation increment results from the difference of temperate increment between the two cases.
参考文献

[1] 王伟臣, 魏志军, 张峤 等. 后燃对火箭发动机羽流红外特性的影响[J]. 航空动力学报, 2010, 25(11): 2612~2618

    Wang Weichen, Wei Zhijun, Zhang Qiao et al.. Influence of afterburning on infrared signature of rocket motor exhaust plume [J]. J. Aerospace Power, 2010, 25(11): 2612~2618

[2] 姜毅, 傅德彬. 固体火箭发动机尾喷焰复燃流场计算[J]. 宇航学报, 2008, 29(2): 615~620

    Jiang Yi, Fu Debin. Numerical simulation for non equilibrium chemically reacting fluid field of the solid rocket motor exhaust plume [J]. J. Astronautics, 2008, 29(2): 615~620

[3] S. T. Surzhikov. Monte Carlo Simulation of Plumes Spectral Emission [R]. Florida: Institute for Problems in Mechanics Russian Academy of Sciences (IPMech RAS), 2003

[4] L. Linhua. Backward Monte Carlo method based on radiation distribution factor [J]. AIAA Journal of Thermophysics and Heat Transfer, 2004, 18(1): 151~153

[5] 阮立明, 齐宏, 王圣刚 等. 导弹尾喷焰目标红外特性的数值仿真[J]. 红外与激光工程, 2008, 37(6): 959~962

    Ruan Liming, Qi Hong, Wang Shenggang et al.. Numerical simulation of the infrared characteristic of missile exhaust plume [J]. Infrared and Laser Engineering, 2008, 37(6): 959~962

[6] 申文涛, 董超, 朱定强 等. 固液混合火箭发动机喷焰红外辐射特性分析[J]. 航空动力学报, 2012, 27(8): 1874~1880

    Shen Wentao, Dong Chao, Zhu Dingqiang et al.. Analysis of infrared radiation of hybrid rocket motor exhaust plume [J]. J. Aerospace Power, 2012, 27(8): 1874~1880

[7] 张小英, 朱定强, 蔡国飙. 固体火箭羽流红外特性的DOM法模拟及高度影响研究[J]. 宇航学报, 2007, 28(3): 702~706

    Zhang Xiaoying, Zhu Dingqiang, Cai Guobiao. Study the infrared characteristics of the solid rocket plume with DOM method and the influence of altitude [J]. J. Astronautics, 2007, 28(3): 702~706

[8] J. Troyes, I. Dubois, V. Borie et al.. Multi-phase reactive numerical simulations of a model solid rocket motor exhaust jet [C]. Sacramento: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. AIAA 2006-4414

[9] 国爱燕, 白廷柱, 胡海鹤 等. 固体火箭发动机羽烟紫外辐射特性分析[J]. 光学学报, 2012, 32(10): 1016002

    Guo Aiyan, Bai Tingzhu, Hu Haihe et al.. Analysis of ultraviolet radiation characteristics of solid propellant rocket motor exhaust plume [J]. Acta Optica Sinica, 2012, 32(10): 1016002

[10] 刘尊洋, 邵立, 汪亚夫 等. 复燃对液体火箭尾焰红外辐射特性的影响[J]. 光子学报, 2013, 42(4): 480~485

    Liu Zunyang, Shao Li, Wang Yafu et al.. Influence of after barning on infrared radiation of liquid rocket exhaus pluma [J]. Acta Phtonica Sinica, 2013, 42(4): 480~485

[11] H. Ounis, G. Ahmadi, J. B. Mclaughlin. Brownian diffusion of submicrometer particles in the viscous sublayer [J]. J. Colloid and Interface Science, 1991, 143(1): 266~277

[12] 董士奎, 谈和平, 余其铮 等. 300~3000 K水蒸气红外辐射谱带模型参数[J]. 热能动力工程, 2001, 16(1): 33~38

    Dong Shikui, Tan Heping, Yu Qizheng et al.. Infrared radiative spectral band-model parameters for water vapor in the 300~3000 K temperature range [J]. J. Engineering for Tehrmal Energy and Power, 2001, 16(1): 33~38

[13] 董士奎, 余其铮, 谈和平 等. 燃烧产物二氧化碳高温辐射的窄谱带模型参数[J]. 航空动力学报, 2001, 16(4): 355~359

    Dong Shikui, Yu Qizheng, Tan Heping et al.. Narrow band model parameters of high temperature radiation for carbon dioxide of combustion products [J]. J. Aerospace Power, 2001, 16(4): 355~359

[14] 谈和平, 夏新林, 刘林华 等. 红外辐射特性与传输的数值计算[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006

    Tan Heping, Xia Xinlin, Liu Linhua et al.. Numerical Simulation of Infrared Radiation Characteristics and Transfer [M]. Harbin: Harbin Institute of Technology Press, 2006

[15] 张小英, 朱定强, 蔡国飙. 固体火箭羽流中Al2O3粒子的辐射特性[J]. 固体火箭技术, 2006, 29(4): 247~250

    Zhang Xiaoying, Zhu Dingqiang, Cai Guobiao. Radiation characteristics of Al2O3 particles in solid rocket plume [J]. J. Solid Rocket Technology, 2006, 29(4): 247~250

[16] R. A. Reed, V. S. Calia. Review of aluminum oxide rocket exhaust particles[C]. AIAA 28th Thermophysics conference, 1993. 93-2819

[17] G. N. Freeman, C. B. Ludwig, W. Malkmus et al.. Development and Validation of Standardized Infrared Radiation Model (SIRRM) [R]. California: Air Force Rocket Propulsion Laboratory, 1979. ADA 076199

[18] 王小东, 吴健, 邱荣. MIE散射系数的改进算法[J]. 光电工程, 2006, 33(3): 24~27

    Wang Xiaodong, Wu Jian, Qiu Rong. Improved algorithm for MIE scattering coefficient [J]. Opto-Electronic Engineering, 2006, 33(3): 24~27

[19] R. W. Hermsen. Aluminum oxide particle size for solid rocket motor performance prediction [J]. J. Space-Craft Rockets, 1981, 18(6): 483~490

[20] R. Siegel, R. J. Howell. Thermal Radiation Heat Transfer [M]. Washington D C: Hemisphere and McGraw-Hill, 1981

[21] 刘尊洋, 邵立, 汪亚夫 等. 飞行参数对液体火箭尾焰红外辐射特性的影响[J]. 光学学报, 2013, 33(4): 0404001

    Liu Zunyang, Shao Li, Wang Yafu et al.. The influence of flight parameters on the infrared radiation of a liquid rocket exhaust plume [J]. Acta Optica Sinica, 2013, 33(4): 0404001

[22] R. C. Farmer, S. D. Smith, B. L. Myruski. Radiation from advanced solid rocket motor plumes[R]. NAS8-39370.1994

[23] F. S. Simmons. Rocket Exhaust Plume Phenomenology [M]. EI Segundo: The Aerospace Press and American Institute of Aeronautics and Astronautics, 2000

刘尊洋, 邵立, 汪亚夫, 孙晓泉. 复燃对固体火箭尾焰红外辐射特性的影响[J]. 光学学报, 2013, 33(6): 0604001. Liu Zunyang, Shao Li, Wang Yafu, Sun Xiaoquan. Influence on Afterburning on Infrared Radiation of Solid Rocket Exhaust Plume[J]. Acta Optica Sinica, 2013, 33(6): 0604001.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!