激光与光电子学进展, 2018, 55 (8): 081404, 网络出版: 2018-08-13   

正交解调Pound-Drever-Hall激光稳频技术研究 下载: 598次

Research on Laser Frequency Stabilization Techniques Using Orthogonally Demodulated Pound-Drever-Hall Method
作者单位
1 西安理工大学机械与精密仪器学院, 陕西 西安 710048
2 西安石油大学光电油气测井与检测教育部重点实验室, 陕西 西安 710065
摘要
为克服传统Pound-Drever-Hall(PDH)激光稳频方法的缺点,设计了正交解调PDH激光稳频系统。该系统采用同一直接数字频率合成器(DDS)同步产生三路同频正弦信号,一路作为本振信号驱动电光调制器产生激光相位调制边带,另外两路相位差为90°的信号作为解调参考信号。采用两个模拟解调器分别获得误差信号的同相分量和正交分量,对其进行数字化采集和相敏检波运算,即可获得稳频系统的误差信号。通过正交解调PDH激光稳频关键技术研究,建立了激光频率跟踪实验系统。实验结果表明,Fabry-Perot (F-P)参考腔可以实时跟踪激光频率变化的功能,跟踪时长约1 h。
Abstract
To overcome the disadvantages of traditional Pound-Drever-Hall (PDH) laser frequency stabilization method, we have design a PDH laser frequency stabilization system based on orthogonal demodulation method.The system uses the same direct digital synthesizer (DDS) to synchronously generate three sine signals with the same frequency. One signal is used as local oscillator signal to drive an electro-optic modulator so as to produce the phase sidebands, and the other two sine signals with a phase difference of 90° are used as demodulation references. The in-phase and orthogonal components of the error signal are obtained by use of two analog demodulators, and the error signal of the frequency stabilization system is obtained when both components are digitally sampled and then operated by an algorithm of digital phase-sensitive detection. The key techniques for the PDH laser frequency stabilization based on the orthogonal demodulation method have been investigated, and an experimental system of laser frequency tracking has been established. Experimental results show that the F-P cavity can track the laser frequency variation in real time, with a tracking time of approximately about 1 hour.
参考文献

[1] 沈辉, 李刘锋, 陈李生. 超窄线宽激光——激光稳频原理及其应用[J]. 物理, 2016, 45(7): 441-448.

    Shen H, Li L F, Chen L S. Lasers with ultra-narrow linewidth-theories and applications of laser frequency stabilization[J]. Physics, 2016, 45(7): 441-448.

[2] Clivati C, Mura A, Calonico D, et al. Planar-waveguide external cavity laser stabilization for an optical link with 10-19 frequency stability[J]. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 2011, 58(12): 2582-2587.

[3] Chen Q F, Nevsky A, Schiller S. Locking the frequency of lasers to an optical cavity at the 1.6×10-17 relative instability level[J]. Applied Physics B, 2012, 107(3): 679-683.

[4] Chen H Q, Jiang Y Y, Bi Z Y, et al. Progress and trend of narrow-linewidth lasers[J]. Science China Technological Sciences, 2013, 56(7): 1589-1596.

[5] Wu B, Yao H, Hua G, et al. 1 Hz linewidth Ti∶sapphire laser as local oscillator for 40Ca+ optical clocks[J]. Review of Scientific Instrument, 2016, 87(6): 063121.

[6] Drever R W P, Hall J L, Kowalski F V, et al. Laser phase and frequency stabilization using an optical resonator[J]. Applied Physics B: Photophysics and Laser Chemistry, 1983, 31(2): 97-105.

[7] 郑公爵, 戴大鹏, 方银飞, 等. 基于PDH技术的光学传递腔的锁定[J].激光与光电子学进展, 2014, 51(12): 121401.

    Zheng G J, Dai D P, Fang Y F, et al. Locking of optical transfer cavity based on PDH technique[J]. Laser & Optoelectronics Progress, 2014, 51(12): 121401.

[8] Cygan A, Lisak D, Maslowski P, et al. Pound-Drever-Hall-locked, frequency-stabilized cavity ring-down spectrometer[J]. Review of Scientific Instrument, 2011, 82(6): 063107.

[9] Notcutt M, Ma L, Ye J, et al. Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity[J]. Optics Letters, 2005, 30(14): 1815-1817.

[10] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2012, 6(10): 687-692.

[11] Webster S A, Oxborrow M, Gill P. Vibration insensitive optical cavity[J]. Physical Review A, 2007, 75(1): 10064-10070.

[12] Davila-Rodriguez J, Baynes F N, Ludlow A D, et al. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation[J]. Optics Letters, 2017, 42(7): 1277-1280.

[13] Andreou S, Williams K A, Bente E A J M. Residual amplitude modulation in InP-based integrated phase modulators and its effect in Pound-Drever-Hall frequency stabilization[C]∥Integrated Photonics Research, Silicon and Nanophotonics 2017, July, 24-27 2017, New Orleans, Louisiana United States. Washington: Optical Society of America, 2017: IM3A.7.

[14] 范夏雷, 金尚忠, 张枢, 等. 多频率合成主动抑制激光稳频的剩余幅度调制[J].中国激光, 2016, 43(4): 0402001.

    Fan X L, Jin S Z, Zhang S, et al. Active suppression of residual amplitude modulation in laser frequencystabilization by multi-frequency mixing[J]. Chinese Journal of Lasers, 2016, 43(4): 0402001

[15] Li Z X, Ma W G, Yang W H, et al. Reduction of zero baseline drift of the Pound-Drever-Hall error signal with a wedged electro-optical crystal for squeezed state generation[J]. Optics Letters, 2016, 41(14): 3331-3333.

[16] Gallego J, Ghosh S, Alavi S K, et al. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis[J]. Applied Physics B, 2016, 122(3): 47.

[17] 王梦宇, 金雪莹, 王静, 等. 基于回音壁模式微球腔的PDH稳频技术[J]. 光子学报, 2017, 46(7): 0706003.

    Wang M Y, Jin X Y, Wang J, et al. Analysis of the Pund-Drever-Hall frequency stabilization technique based on a whispering gallery mode optical microsphere cavity[J]. Acta Photonica Sinica, 2017, 46(7): 0706003.

[18] Spencer D T, Davenport M L, Komljenovic T, et al. Stabilization of heterogeneous silicon lasers using Pound-Drever-Hall locking to Si3N4 ring resonators[J]. Optics Express, 2016, 24(12): 13511-13517.

[19] Lam T Y, Slagmolen B J, Chow J H, et al. Digital laser frequency stabilization using an optical cavity[J]. IEEE Journal of Quantum Electronics, 2010, 46(8): 1178-1183.

[20] 耿伟彪, 胡姝玲, 邵洪峰. 基于FPGA数字相位调制光外差激光稳频系统设计[J]. 激光技术, 2014,38(5): 665-668.

    Geng W B, Hu S L, Shao H F. Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique[J]. Laser Technology, 2014: 38(5): 665-668.

[21] 卞正兰, 黄崇德, 高敏, 等. PDH激光稳频控制技术研究[J].中国激光, 2012, 39(3): 0302001.

    Bian Z L, Huang C D, Gao M, et al. Research on control technique for Pound-Drever-Hall laser frequency stabilizing system[J]. Chinese Journal of Lasers, 2012, 39(3): 0302001.

[22] Gatti D, Gotti R, Sala T, et al. Wide-bandwidth Pound-Drever-Hall locking through a single-sideband modulator[J]. Optics Letters, 2015, 40(22): 5176-5179.

[23] 苏娟, 焦明星, 马源源, 等. 正交解调Pound-Drever-Hall激光稳频系统设计[J]. 中国激光, 2016, 43(3): 0316001.

    Su J, Jiao M X, Ma Y Y, et al. Design of Pound-Drever-Hall laser frequency stabilization system using the quadrature demodulation[J]. Chinese Journal of Lasers, 2016, 43(3): 0316001.

[24] 郭业才, 阮怀林. 随机信号分析[M]. 合肥: 合肥工业大学出版社, 2009.

    Guo Y C, Ruan H L. Random signal processing[M]. Hefei: Hefei University of Technology Press, 2009.

[25] Oppenheim A V, Schafer R W. Discrete-time signal processing[M]. New Jersey: Prentice Hall, 1999.

[26] 李素芝, 万建伟. 时域离散信号处理[M]. 长沙:国防科技大学出版社, 1994.

    Li S Z, Wan J W. Discrete-time signal processing[M].Changsha: National University of Defense Technology Press,1994.

[27] Black E D.An introduction to Pound-Drever-Hall laser frequency stabilization[J]. American Journal of Physics, 2001, 69(1): 79-87.

苏娟, 焦明星, 江飞, 邢俊红. 正交解调Pound-Drever-Hall激光稳频技术研究[J]. 激光与光电子学进展, 2018, 55(8): 081404. Su Juan, Jiao Mingxing, Jiang Fei, Xing Junhong. Research on Laser Frequency Stabilization Techniques Using Orthogonally Demodulated Pound-Drever-Hall Method[J]. Laser & Optoelectronics Progress, 2018, 55(8): 081404.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!