光子学报, 2017, 46 (4): 0413001, 网络出版: 2017-05-03  

Cu2+离子注入的石英光波导的特性研究

Properties of Waveguide in Fused Silica and Quartz Crystal Fabricated by Cu2+ Ion Implantation
作者单位
河北工程大学 数理科学与工程学院, 河北 邯郸 056038
摘要
利用Cu2+离子注入的方式在熔融石英和石英晶体上分别制备了平面光波导结构.通过棱镜耦合实验测试了两种光波导的导模特性, 结果表明:在同样的注入条件下熔融石英上形成了增加型的光波导结构, 而石英晶体上形成了位垒型的光波导结构.研究了退火温度对两种光波导导模折射率的影响, 熔融石英光波导中导模的折射率随着退火温度的升高而降低, 而石英晶体光波导中导模的折射率随着退火温度的升高先增加后降低.为了进一步分析离子注入两种材料形成光波导的微观机理, 利用SRIM模拟了Cu2+离子注入两种材料的电子能量损失和核能量损失, 并且模拟了两种光波导结构的折射率分布.模拟结果表明:熔融石英光波导的主要形成原因是离子注入表面的折射率大于其体材料的折射率, 而石英晶体光波导的主要形成原因是离子射程末端的折射率小于其体材料的折射率.因此, 在熔融石英光波导的形成中电子能量损失起主要作用, 而在石英晶体光波导的形成中核能量损失起主要作用.
Abstract
Planar waveguides were fabricated in fused silica and quartz crystal by Cu2+ ion implantation respectively. The guiding mode property was investigated in two types of waveguides by the prism-coupling method. The results indicate that an enhance-type waveguide formed in fused silica, while a barrier-type waveguide formed in quartz crystal by the same ion implantation. The anealing effects to the effective refractive indices of guiding modes in two types of waveguides were researched. The effective refractive indices of the guiding modes in fused silica decrease with the increase of annealing temperature. However, in quartz crystal the effective refractive indices of the guiding modes increase firstly and then decrease with the increase of annealing temperature. In order to investigate the formation mechanism of two kinds of waveguide, the distribution of the electronic and nuclear energy deposition in fused silica and quartz crystal were simulated using the SRIM code. In addition, the refractive index profiles of the types of waveguide were reconstructed. The simulation results show that in fused silica the main reason of the waveguide formation is that the refractive index in the near-surface region is larger than the substrate. However, in quartz crystal waveguide the major formation reason is that the refractive index at the end of ion track is less than the substrate region. Therefore, the electronic energy damage plays an important role for the formation of fused silica waveguide, while nuclear energy deposition is the dominant factor in the quartz crystal waveguide.
参考文献

[1] KARASINSKI P, TYSZKIEWICZ C, DOMANOWSKA A, et al. Low loss, long time stable sol–gel derived silica–titania waveguide films[J]. Materials Letters, 2015, 143: 5-7.

[2] SHAO L Y, CANNING J, WANG T, et al. Viscosity of silica optical fibers characterized using regenerated gratings[J]. Acta Materialia, 2013, 61(16): 6071-6081.

[3] GAO T Q, ZHAO Y, ZHOU G H, et al. Fabrication and characterization of three dimensional woven carbon fiber/silica ceramic matrix composites[J]. Composites Part B: Engineering, 2015, 77: 122-128.

[4] SUN Z M, ZHOU C H, CAO H C, et al. Unified beam splitter of fused silica grating under the second Bragg incidence[J]. Journal of the Optical Society of America A, 2015, 32(11): 1952-1957.

[5] PILATE P, LARDOT V, CAMBIER F, et al. Contribution to the understanding of the high temperature behavior and of the compressive creep behavior of silica refractory materials[J]. Journal of European Ceramic Society, 2015, 35(2): 813-822.

[6] LIAN T W, KONDO A, KOZAWA T, et al. Effect of fumed silica properties on the thermal insulation performance of fibrous compact[J]. Ceramics International, 2015, 41(8): 9966-9971.

[7] VERISSIMO M, GOMES M, Assessment on the use of biodiesel in cold weather: pour point determination using a piezoelectric quartz crystal[J]. Fuel, 2011, 90(90): 2315-2320.

[8] LI K W, WANG Z B, WANG L M, et al. 45° double-drive photoelastic modulation[J]. Journal of the Optical Society of America A, 2016, 33(10): 2041-2046.

[9] KANG Q, SHENG R, LI Y L, et al. Real time monitor electroless plating of Ni–P film on quartz surface by an electrode-separated piezoelectric sensor[J]. Sensors & Actuators B Chemical, 2011, 157(2): 533-539.

[10] LE G D, HELARY G, GINDRE M, et al. Monitoring cell adhesion processes on bioactive polymers with the quartz crystal resonator technique[J]. Biomaterials, 2005, 26(19): 4197-4205

[11] WANG J, WANG Y, HU W K, et al. Huang, parallel finite element analysis of high frequency vibrations of quartz crystal resonators on Linux cluster[J]. Acta Mechanica Solida Sinica, 2008, 21(6): 549-554.

[12] HABIBI N, PASTORINO L, RUGGIERO C, Functionalized biocompatible polyelectrolyte multilayers for drug delivery: In situ investigation of mechanical properties by dissipativequartz crystal microbalance[J]. Materials Science & Enginerring C Materials for Biological Applications, 2014, 35(2): 15-20.

[13] HILLMAN A R, RYDER K S, ZALESKI C J, et al. Application of the combined electrochemical quartz crystal microbalance and probe beam deflection technique in deep eutectic solvents[J]. Electrochimica Acta, 2014, 135(22): 42-51.

[14] VITTORIAS E, KAPPL M, BUTT H J, et al. Studying mechanical microcontacts of fine particles with the quartz crystal microbalance[J]. Powder Technology, 2010, 203(3): 489-502.

[15] XIANG B X, WANG L, JIAO Y, et al. Low-loss optical waveguides preserving photoluminescence features in Pr3+-doped yttrium orthosilicate crystal fabricated by ion implantation[J]. Journal of Lightwave Technology, 2015, 33(11): 2263-2267.

[16] QIAO M, WANG T J, SONG H L, et al. Lattice damage and waveguide properties of medium- and high-energy C3+ ions-irradiated LaAlO3 crystals[J]. Applied Physics B, 2017, 123: 19.

[17] CRESPILLO M L, GRAHAM J T, ZHANG Y, et al. In-situ luminescence monitoring of ion-induced damage evolution in SiO2 and Al2O3[J]. Journal of Luminescence, 2016, 172: 208-218.

[18] PLAKSIN O A, TAKEDA Y, KONO K, et al. Optical effects in silica glass during implantation of 60 keV Cu- ions[J]. Applied Surface Science, 2005, 244(1): 79-83.

[19] Ramírez-Espinoza C, Salazar D, Rangel-Rojo R, et al. Design of step-index optical waveguides by ion implantation[J]. Journal of Lightwave Technology, 2015, 33(14): 3052-3059.

[20] ZIEGLER J F. "Computer code", SRIM2013[EB/OL]. [2016-12-16]. http: //www.srim.org.

[21] CHANDLER P J, LAMA F L, A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation[J]. Journal of Modern Optics, 1986, 33(2): 127-143.

[22] WANG T J, ZHOU Y F, YU X F, et al. Optical waveguide properties of Ca0.4Ba0.6Nb2O6, crystal formed by oxygen ion irradiation[J]. Nuclear Instruments & Methods in Physics Research, 2015, 354: 187-191.

[23] TAN Y, CHEN F, WANG L, et al. Carbon ion-implanted optical waveguides in Nd: YLiF4 crystal: Refractive index profiles and thermal stability[J]. Nuclear Instruments and Methods in Physics Research B, 2007, 260(2): 567-570.

[24] BENTINI G G, BIANCONI M, CHIARINI M, et al. Effect of low dose high energy O3+ implantationon refractive index and linear electro-optic properties in X-cut LiNbO3: planaroptical waveguide formation and characterization[J]. Journal of Applied Physics, 2002, 92(11): 6477-6483.

[25] LIU X H, ZHAO J H, ZHANG S M, et al. Damage behaviors in Nd: YVO4 by multi-energy proton implantation[J]. Nuclear Instruments & Methods in Physics Research, 2012, 286(9): 213–217.

[26] MANZANO-Santamaría J, OLIVARES J, RIVERA A, et al. Electronic damage in quartz (c-SiO2) by MeV ion irradiations: Potentiality for optical waveguiding applications[J]. Nuclear Instruments & Methods in Physics Research, 2012, 272(3): 271-274.

[27] JIANG Y, WANG K M, WANG X L, et al. Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation[J]. Physical Review B, 2007, 75: 195101.

刘秀红, 韩海燕, 朱巧芬, 黄艳宾, 董昭. Cu2+离子注入的石英光波导的特性研究[J]. 光子学报, 2017, 46(4): 0413001. LIU Xiu-hong, HAN Hai-yan, ZHU Qiao-fen, HUANG Yan-bin, DONG Zhao. Properties of Waveguide in Fused Silica and Quartz Crystal Fabricated by Cu2+ Ion Implantation[J]. ACTA PHOTONICA SINICA, 2017, 46(4): 0413001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!