红外技术, 2019, 41 (1): 54, 网络出版: 2019-03-23  

选剔同步的高光谱遥感图像波段选择算法

Band-Selection Algorithm for Hyperspectral Imagery with Simultaneous Selection and Elimination
作者单位
1 山东师范大学物理与电子科学学院, 山东济南 250358
2 齐鲁工业大学电气工程与自动化学院, 山东济南 250358
摘要
为了降低高光谱遥感图像冗余度, 减少后续的计算复杂度, 提出了选剔同步的高光谱遥感图像波段选择算法。以主成分分析后的数据作为参考波段来源, 以互信息作为选取波段的相似性度量, 引入 R-KL系数作为剔除波段的判别准则, 利用边选取边剔除的方式进行波段选择。为了验证该算法的有效性, 运用贝叶斯分类法对降维后波段进行分类, 并与自适应波段选择和基于最大信息量的波段选择算法进行比较。结果显示当选取波段数目较少时, 该算法的分类效果优于上述两种算法, 当选取波段数目较多时, 3种算法分类效果相当, 故该算法是一种有效的波段选择算法。
Abstract
To reduce the redundancy of hyperspectral remote-sensing images and the subsequent computational complexity, a band-selection algorithm with simultaneous selection and elimination is proposed. Using both the data derived from principal component analysis as a source for the reference band as well as related information on the similarity measure of the selected band, the R-KL ratio is introduced as the discriminant criterion to eliminate bands. The basic objective of the proposed algorithm is simultaneous band selection and rejection. To validate the proposed algorithm, Bayesian classification is used to classify the dimensionally reduced bands. The proposed algorithm is compared with the adaptive band selection method and the band-selection algorithm based on maximum information. When the number of selected bands is small, the results show that the classification effect of the proposed algorithm is much greater than the aforementioned two algorithms. When the number of selected bands is large, the three algorithms perform quite effectively. We can conclude that the proposed band-selection algorithm is effective at band selection and rejection.
参考文献

[1] 童庆禧, 张兵, 郑兰芬. 高光谱遥感——原理、技术与应用 [M].北京: 高等教育出版社, 2006. TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral Remote Sensing-Theory, Technology and Applications[M]. Beijing: Higher Education Press, 2006.

[2] 刘恒殊 , 彭风华 , 黄廉卿. 超光谱遥感图像特征分析 [J].光学精密工程, 2001, 9(4): 392-395. LIU Hengshu, PENG Fenghua, HUANG Lianqing. Feature analysis of hyperspectral images[J]. Optics and Precision Engineering, 2001, 9(4): 392-395.

[3] Hughes G. On the mean accuracy of statistical pattern recognizers[J]. IEEE Transactions on Information Theory, 1968, 14(1): 55-63.

[4] Abdi H, Williams L J. Principal component analysis[J]. Wiley interdisciplinary reviews: computational statistics, 2010, 2(4): 433-459.

[5] 王坤, 屈惠明 . 基于改进昀小噪声分离变换的异常检测算法 [J].激光技术, 2015, 39(3): 381-385. WANG Kun, QU Huiming. Anomaly detection method based on improved minimum noise fraction transformation[J]. Laser Technology, 2015, 39(3): 381-387.

[6] 孙伟伟 . 基于流形学习的高光谱影像降维理论与方法研究 [J].测绘学报, 2014, 43(4): 439-439. SUN Weiwei. Theory and Methods of Dimensionality reduction Using Manifold Learning for Hyperspectral Imagery[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 439-439.

[7] 杜培军, 方涛, 唐宏, 等. 高光谱遥感信息中的特征提取与应用研究 [J].光子学报 , 2005, 34(2): 293-298. DU Peijun, FANG Tao, TANG Hong, et al. Spectral Features Extraction in Hyperspectral RS Data and Its Application to Information Processing[J]. Acta Photonica Sinica, 2005, 34(2): 293-298.

[8] 赵海士 , 路来君 , 杨晨. 一种基于图像熵的密度峰值聚类波段选择方法[J]. 吉林大学学报: 理学版, 2017, 55(2): 376-378. ZHAO Haishi, LU Laijun, YANG Chen. A Method for Density Peaks Clustering Band Selection Band Based on Image Entropy[J]. Journal of Jilin University: science Edition, 2017, 55(2): 376-378.

[9] GUO B, Gunn S R, Damper R I, et al. Band selection for hyperspectral image classification using mutual information[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(4): 522-526.

[10] Chavez P S, Berlin G L, Sowers L B. Statistical method for selecting landsat MSS[J]. Journal of Applied Photographic Engineering, 1982, 8(1): 23-30.

[11] 刘春红 , 赵春晖, 张凌雁. 一种新的高光谱遥感图像降维方法 [J].中国图象图形学报: A辑, 2005, 10(2): 218-222. LIU ChunHong, ZHAO ChunHui, ZHANG LingYan. A new method of hyperspectral remote sensing image dimensional reduction[J]. Journal of Image and Graphics, 2005, 10(2): 218-222.

[12] 刘雪松 , 葛亮, 王斌, 等. 基于昀大信息量的高光谱遥感图像无监督波段选择方法[J].红外与毫米波学报, 2012, 31(2): 166-171. LIU Xuesong, GE Liang, WANG Bin, et al. An unsupervised band selection algorithm for hyperspectral imagery based on maximal information[J]. Journal of Infrared and Millimeter Waves, 2012, 31(2): 166-171.

[13] 王辉兵 , 冯林, 吴振宇. 一种基于离散度平衡的降维算法 [J].计算机辅助设计与图形学学报, 2016, 28(6): 995-1002. WANG Huibing, FENG Lin, WU Zhenyu. A Dimension Reduction Algorithm Based on Divergence Balance[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 995-1002.

[14] 刘友山, 吕成文, 祝凤霞, 等. 基于 PCA和多尺度纹理特征提取的高分辨率遥感影像分类[J].遥感技术与应用 , 2012, 27(5): 706-711. LIU Youshan, LYU Chengwen, ZHU Fengxia, et al. Extraction of high spatial resolution remote sensing image classification based on PCA and multi-scale texture feature[J]. Remote Sensing Technology and Application, 2012, 27(5): 706-711.

[15] CHANG C I, LIU K H. Progressive band selection of spectral unmixing for hyperspectral imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2002-2017.

[16] 杨佳, 华文深, 刘恂, 等. 基于 KL散度与光谱可分性距离的波段选择算法[J].应用光学 , 2014, 35(1): 71-75. YANG Jia, HUA Wenshen, LIU Xun, et al. Band selection algorithm for hyperspectral imagery based on K-L divergence and spectral divisibility distance[J]. Journal of applied optics, 2014, 35(1): 71-75.

[17] 赵春晖 , 王立国, 齐滨. 高光谱遥感图像处理方法及应用 [M].北京: 电子工业出版社, 2016. ZHAO Chunhui, WANG Liguo, QI Bin. Hyperspectral Remote Sensing Images Processing Methods and Applications[M]. Beijing: Publishing House of Electronics Industry, 2016.

[18] 张兵, 高连如 . 高光谱图像分类与目标探测 [M].北京: 科学出版社, 2011. ZHANG Bing, GAO Lianru. Hyperspectral Image Classification And Target Detection[M]. Beijing: Science Press, 2011.

周忠磊, 李雪玉, 李庆华, 杜军. 选剔同步的高光谱遥感图像波段选择算法[J]. 红外技术, 2019, 41(1): 54. ZHOU Zhonglei, LI Xueyu, LI Qinghua, DU Jun. Band-Selection Algorithm for Hyperspectral Imagery with Simultaneous Selection and Elimination[J]. Infrared Technology, 2019, 41(1): 54.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!