中国激光, 2016, 43 (10): 1011001, 网络出版: 2016-10-12  

楔形导模共振滤波片的光谱分析

Spectral Characteristics of Guided-Mode Resonance Filter with Wedged Waveguide Layer
作者单位
上海理工大学光电信息与计算机工程学院上海市现代光学系统重点实验室, 教育部光学仪器与系统工程中心, 上海 200093
摘要
针对通信波段设计并制作了楔形波导层的导模共振滤波片(GMRF),分析并研究了其光谱特性。采用三角掩模板的方法进行离子束刻蚀,刻蚀一定次数后获得楔形波导层。光栅线条方向分为平行于和垂直于楔形波导层变化的方向。实验结果表明,对于两种结构,共振峰的位置与滤波片上的位置呈近似线性关系。光栅刻槽平行于楔形层变化的方向时共振峰的半峰全宽较光栅刻槽垂直于楔形层变化的方向时大。最终在20 mm的样品上,获得了线性渐变的Ta2O5楔形薄膜,其反射谱在1560~1600 nm范围内近似于线性变化。
Abstract
We designed and fabricated guided-mode resonance filters (GMRFs) with a wedged waveguide layer, and analyzed their spectral characteristics. GMRF was etched for several times with the ion-beam etching technique and a triangle-shaped mask to obtain a wedged waveguide layer. The lines of photoresist gratings and thickness variation direction of the wedge-shaped waveguide layer are either parallel or perpendicular to each other. The experimental results show that the relationship between the resonance peak wavelength and position on the filter is approximately linear for the two samples. The half width at maximum in the case that the grating lines are parallel to the thickness variation direction of the wedge-shaped waveguide layer is larger than that in the case that the grating lines are perpendicular to the thickness variation direction. Through a linear gradation in the thickness of the Ta2O5 film across a distance of 20 mm, the spectral location of the reflection peaks was found to vary nearly linearly across the spectral range of 1560-1600 nm.
参考文献

[1] 武旭华, 朱永田, 王磊. 高分辨率阶梯光栅光谱仪的光学设计[J]. 光学 精密工程, 2003, 11(5): 442-447.

    Wu Xuhua, Zhu Yongtian, Wang Lei. Optical design of high resolution echelle spectrometer[J]. Optics and Precision Engineering, 2003, 11(5): 442-447.

[2] Grabarnik S, Emadi A, Wu H, et al. High-resolution microspectrometer with an aberration-correcting planar grating[J]. Applied Optics, 2008, 47(34): 6442-6447.

[3] 唐玉国, 宋楠, 巴音贺希格, 等. 中阶梯光栅光谱仪的光学设计[J]. 光学 精密工程, 2010, 18(9): 1989-1995.

    Tang Yuguo, Song Nan, Bayanheshig, et al. Optical design of cross-dispersed echelle spectrograph[J]. Optics and Precision Engineering, 2010, 18(9): 1989-1995.

[4] 孔鹏, 巴音贺希格, 李文昊, 等. 双光栅平场全息凹面光栅光谱仪的优化设计[J]. 光学学报, 2011, 31(2): 0205001.

    Kong Peng, Bayanheshig, Li Wenhao, et al. Optimization of double-grating flat-field holographic concave grating spectrograph[J]. Acta Optica Sinica, 2011, 31(2): 0205001.

[5] Wang S, Xia C, Chen X, et al. Concept of a high-resolution miniature spectrometer using an integrated filter array[J]. Optics Letters, 2007, 32(6): 632-634.

[6] 顾培夫, 白胜元, 李海峰, 等. 密集型波分复用薄膜干涉滤光片的设计[J]. 光学学报, 2002, 22(7): 794-797.

    Gu Peifu, Bai Shengyuan, Li Haifeng, et al. Design of DWDM thin-film interference filter[J]. Acta Optica Sinica, 2002, 22(7): 794-797.

[7] Sheng B, Chen P, Tao C, et al. Linear variable filters fabricated by ion beam etching with triangle-shaped mask and normal film coating technique[J]. Chinese Optics Letters, 2015, 13(12): 122301.

[8] Cunningham B, Lin B, Qiu J, et al. A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions[J]. Sensors and Actuators B, 2002, 85(3): 219-226.

[9] 孔伟金, 郑併斌, 云茂金, 等. 基于导模共振效应三基色窄带滤光片的研究[J]. 光学学报, 2011, 31(10): 1005006.

    Kong Weijin, Zheng Bingbin, Yun Maojin, et al. Guided-mode resonance filter with narrow waveband for three primary colors[J]. Acta Optica Sinica, 2011, 31(10): 1005006.

[10] Wang Q, Zhang D, Xu B, et al. Colored image produced with guided-mode resonance filter array[J]. Optics Letters, 2011, 36(23): 4698-4700.

[11] Foland S, Swedlove B, Nguyen H, et al. One-dimensional nanograting-based guided-mode resonance pressure sensor[J]. Journal of Microelectromechanical Systems, 2012, 21(5): 1117-1120.

[12] Bao J, Bawendi M G. A colloidal quantum dot spectrometer[J]. Nature, 2015, 523(7558): 67-70.

[13] 麻健勇, 刘世杰, 魏朝阳, 等. 可见光波段双层浮雕型导模共振滤波器设计与分析[J]. 物理学报, 2008, 57(7): 4195-4201.

    Ma Jianyong, Liu Shijie, Wei Chaoyang, et al. Design and analysis of double layer resonant grating filters in the visible spectral region[J]. Acta Physica Sinica, 2008, 57(7): 4195-4201.

[14] Dobbs D W, Gershkovich I, Cunningham B T. Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal[J]. Applied Physics Letters, 2006, 89(12): 123113.

[15] Wang Q, Zhang D, Huang Y, et al. Type of tunable guided-mode resonance filter based on electro-optic characteristic of polymer-dispersed liquid crystal[J]. Optics Letters, 2010, 35(8): 1236-1238.

[16] Xiao G, Zhu Q, Shen Y, et al. A tunable submicro-optofluidic polymer filter based on guided-mode resonance[J]. Nanoscale, 2015, 7(8): 3429-3434.

[17] Qian L, Zhang D, Tao C, et al. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching[J]. Optics Letters, 2016, 41(5): 982-985.

[18] 张大伟, 王琦, 朱亦鸣, 等. 方位角调谐的反射窄带导模共振滤光片设计[J]. 中国激光, 2010, 37(4): 950-953.

    Zhang Dawei, Wang Qi, Zhu Yiming, et al. Design of guided mode resonant filters tuned by azimuthal angle[J]. Chinese J Lasers, 2010, 37(4): 950-953.

[19] 杨赛, 盛斌, 张大伟, 等. 入射角调谐的三基色导模共振滤光片[J]. 中国激光, 2015, 42(4): 0416002.

    Yang Sai, Sheng Bin, Zhang Dawei, et al. Guided-mode resonance filter for three primary color tuned by incident angle[J]. Chinese J Lasers, 2015, 42(4): 0416002.

[20] Fehrembach A L, Gauthier-Lafaye O, Yu K C, et al. Measurement and modeling of 2D hexagonal resonant-grating filter performance[J]. Journal of the Optical Society of America A, 2010, 27(7): 1535-1540.

周红艳, 盛斌, 倪争技, 黄元申, 张大伟. 楔形导模共振滤波片的光谱分析[J]. 中国激光, 2016, 43(10): 1011001. Zhou Hongyan, Sheng Bin, Ni Zhengji, Huang Yuanshen, Zhang Dawei. Spectral Characteristics of Guided-Mode Resonance Filter with Wedged Waveguide Layer[J]. Chinese Journal of Lasers, 2016, 43(10): 1011001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!