Frontiers of Optoelectronics, 2008, 1 (1): 75, 网络出版: 2012-11-06  

High nonlinear photonic crystal fiber and its supercontinuum spectrum

High nonlinear photonic crystal fiber and its supercontinuum spectrum
作者单位
1 Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
2 National Key Laboratory for Next Generation Fiber Communication Technologies and Networks, Fiberhome Telecommunication Technologies Co Ltd, Wuhan 430074, China
摘要
Abstract
The high nonlinear photonic crystal fiber with pure silica core has been designed and fabricated, and the practical structure parameters of the fabricated fiber sample coincided precisely with the parameters we designed. The core diameter is 1.65 mm; the air hole diameter is 4.75 mm; the distance between the center of two holes is 5.35 mm; the zero dispersion wavelength of the fiber is 1120 nm; the dispersion at 800 nm is 288 ps? (nm?km)21; and the nonlinear coefficient of this photonic crystal fiber is 112 (W?km)21. The broadly spanning supercontinuum emission with a smooth spectrum stretching from 450 to 1400 nm was attained by the injection of 30 fs Ti:sapphire laser pulses into 2 m-long high linear photonic crystal fibers, with an energy up to 5 nJ at a pulse repetition rate of 100 MHz and a central wavelength of 800 nm.
参考文献

[1] Kuhlmey B T, McPhedran R C, de Sterke C M, et al. Microstructured optical fibers: where’s the edge Optics Express, 2002, 10(22): 1285-1290

[2] Foster M, Gaeta A. Ultra-low threshold supercontinuum generation in sub-wavelength waveguides. Optics Express, 2004, 12(14): 3137-3143

[3] Podlipensky A, Szarniak P, Joly N Y, et al. Bound soliton pairs in photonic crystal fiber. Optics Express, 2007, 15(4): 1653-1662

[4] Luan F, Skryabin D V, Yulin A V, et al. Energy exchange between colliding solitons in photonic crystal fibers. Optics Express, 2006, 14(21): 9844-9853

[5] Zhang R, Teipel J, Giessen H. Theoretical design of a liquidcore photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800-6812

[6] Saitoh K, Fujisawa T, Kirihara T, et al. Approximate empirical relations for nonlinear photonic crystal fibers. Optics Express, 2006, 14(14): 6572-6582

[7] Takara H, Ohara T, Mori K, et al. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing. Electronics Letters, 2000, 36(25): 2089-2090

[8] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window. Optics Express, 2004, 12(10): 2027-2032

[9] Yamamoto T, Kubota H, Kawanishi S, et al. Supercontinuum generation at 1.55 um in a dispersionflattened polarization-maintaining photonic crystal fiber. Optics Express, 2003, 11(13): 1537-1540

[10] Varshney S, Fujisawa T, Saitoh K, et al. Novel design of inherently gain-flattened discrete highly nonlinear photonic crystal fiber Raman amplifier and dispersion compensation using a single pump in C-band. Optics Express, 13(23): 9516-9526

[11] Kudlinski A, George A K, Knight J C, et al. Zero-dispersion wavelength decreasing photonic crystal fibers for ultravioletextend supercontinuum generation. Optics Express, 2006, 14(12): 5715-5722

[12] Omenetto F G, Wolchover N A, Wehner M R, et al. Spectrally smooth supercontinuum for 350 nm to 3 mm in sub-centimeter lengths of soft-glass photonic crystal fibers. Optics Express, 2006, 14(11): 4928-4934

[13] Kano H, Hamaguchi H. In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber. Optics Express, 2006, 14(7): 2798-2804

[14] Fu L, Jain A, Xie H, et al. Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror. Optics Express, 2006, 14(3): 1027-1032

[15] Hilligsoe K M, Andersen T V, Paulsen H N, et al. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths. Optics Express, 2004, 12(6): 1045-1054

[16] Huttunen A, Torma P. Effect of wavelength dependence of non-linearity, gain, and dispersion in photonic crystal fiber amplifiers. Optics Express, 2005, 13(11): 4286-4295

[17] Efimov A, Taylor A, Omenetto F G, et al. Time-spectrallyresolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling. Optics Express, 2004, 12(26): 6498-6507

[18] Zhang R, Teipel J, Giessen H. Theoretical design of a liquidcore photonic crystal fiber for supercontinuum generation. Optics Express, 2006, 14(15): 6800-6812

[19] Genty G, Lehtonen M, Ludvigsen H, et al. Enhanced bandwidth of supercontinuum generated in micro-structured fibers. Optics Express, 2004, 12(15): 3471-3480

[20] Ranka J K, Windeler R S, Stentz A J. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Optics Letters, 2000, 25(1): 25-27

[21] Hu M L, Wang C Y, Song Y J, et al. Mode-selective mapping and control of vectorial nonlinear-optical processes in multimode photonic crystal fibers. Optics Express, 2006, 14(3): 1189-1198

[22] Chow K K, Shu C, Lin C, et al. Extinction ratio improvement by pump-modulated four-wave mixing in a dispersion flattened nonlinear photonic crystal fiber. Optics Express, 2005, 13(22): 8900-8905

[23] Saitoh K, Florous N, Koshiba M. Ultra flattened chromatic dispersion controllability using a defected core photonic crystal fiber with low confinement losses. Optics Express, 2005, 13(21): 8365-8371

[24] Fuerbach A, Steinvurzel P, Bolger J, et al. Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers. Optics Express, 2005, 13(8): 2977-2987

[25] Dudley J, Coen S. Fundamental limits to few-cycle pulse generation from compression of supercontinuum spectra generated in photonic crystal fiber. Optics Express, 2004, 12(11): 2423-2428

[26] Zhang H, Yu S, Zhang J, et al. Effect of frequency chirp on supercontinuum generation in photonic crystal fibers with two zero-dispersion wavelengths. Optics Express, 2007, 15(3): 1147-1154

[27] Gorbach A V, Skryabin D V, Stone J M, et al. Four-wave mixing of solitons with radiation and quasi-nondispersive wave packets at the short wavelength edge of a supercontinuum. Optics Express, 2006, 14(21): 9854-9863

[28] Raikkonen E, Genty G, Kimmelma O, et al. Supercontinuum generation by nanosecond dual-wavelength pumping in micro-structured optical fibers. Optics Express, 2006, 14(17): 7914-7923

[29] Genty G, Ritari T, Ludvigsen H. Supercontinuum generation in large mode area micro-structured fibers. Optics Express, 2005, 13(21): 8625-8633

[30] Hu M L, Wang C Y, Li Y F, et al. Tunable supercontinuum generation in a high index-step photonic-crystal fiber with a comma-shaped core. Optics Express, 2006, 14(5): 1942-1950

Wei CHEN, Jinyan LI, Shiyu LI, Zuowen JIANG, Haiqing LI, Jinggang PENG. High nonlinear photonic crystal fiber and its supercontinuum spectrum[J]. Frontiers of Optoelectronics, 2008, 1(1): 75. Wei CHEN, Jinyan LI, Shiyu LI, Zuowen JIANG, Haiqing LI, Jinggang PENG. High nonlinear photonic crystal fiber and its supercontinuum spectrum[J]. Frontiers of Optoelectronics, 2008, 1(1): 75.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!