发光学报, 2017, 38 (10): 1287, 网络出版: 2017-10-17  

氧化锌量子点和碳量子点及其复合物的制备与发光性能的研究

Preparation and Optical Properties of Zinc Oxide, Carbon and Their Quantum Dot Mixture
作者单位
天津城建大学 理学院, 天津 300384
引用该论文

杨广武, 张守超, 王翠红, 朱飞, 江越. 氧化锌量子点和碳量子点及其复合物的制备与发光性能的研究[J]. 发光学报, 2017, 38(10): 1287.

YANG Guang-wu, ZHANG Shou-chao, WANG Cui-hong, ZHU Fei, JIANG Yue. Preparation and Optical Properties of Zinc Oxide, Carbon and Their Quantum Dot Mixture[J]. Chinese Journal of Luminescence, 2017, 38(10): 1287.

参考文献

[1] TANG X, CHOO E S G, LI L, et al.. Synthesis of ZnO nanoparticles with tunable emission colors and their cell labeling applications [J]. Chem. Mater., 2010, 22(11):3383-3388.

[2] ZHOU H P, XU C H, SUN W, et al.. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications [J]. Adv. Funct. Mater., 2009, 19(24):3892-3900.

[3] TOPETE A, ALATORREMEDA M, IGLESIAS P, et al.. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells [J]. ACS Nano, 2014, 8(3):2725.

[4] SUN Y P, WANG X, LU F, et al.. Doped carbon nanoparticles as a new platform for highly photoluminescent dots [J]. J. Phys. Chem. C: Nanomater. Interf., 2009, 112(47):18295.

[5] AUBERT T, SOENEN S J, WASSMUTH D, et al.. Bright and stable CdSe/CdS@SiO2 nanoparticles suitable for long term cell labeling [J]. Acs Appl. Mater. Interf., 2014, 6(14):11714-11723.

[6] LI Z, GAO C, HU X, et al.. One-pot large-scale synthesis of robust ultrafine silica-hybridized CdTe quantum dots [J]. ACS Appl. Mater. Interf., 1944, 2(4):1211-1219.

[7] DERFUS A M, CHAN W C W, BHATIA S N. Probing the cytotoxicity of semiconductor quantum dots [J]. Nano Lett., 2003, 4(1):11-18.

[8] HARDMAN R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors [J]. Environm. Health Perspect., 2006, 114(2):165.

[9] ZHANG H J, XIONG H M, REN Q G, et al.. ZnO@silica core-shell nanoparticles with remarkable luminescence and stability in cell imaging [J]. J. Mater. Chem., 2012, 22(26):13159-13165.

[10] QU D, ZHENG M, LI J, et al.. Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications [J]. Light: Sci. Appl., 2015, 4:e364.

[11] LIU K K, SHAN C X, LIU H Z, et al.. Fluorescence of ZnO/carbon mixture and application in acid rain detection [J]. RSC Adv., 2017, 7:1841-1846.

[12] ZHU P, WENG Z, LI X, et al.. Biomedical applications of functionalized ZnO nanomaterials: from biosensors to bioimaging [J]. Adv. Mater. Interf., 2016, 3(1):1160-1167.

[13] ZHANG Z Y, XU Y D, MA Y Y, et al.. Biodegradable ZnO@polymer core-shell nanocarriers: pH-triggered release of doxorubicin in vitro [J]. Angew. Chem., 2013, 52(15):4127-4131.

[14] WANG Q, HUANG X, LONG Y, et al.. Hollow luminescent carbon dots for drug delivery [J]. Carbon, 2013, 59(4):192-199.

[15] LIU K K, SHAN C X, HE G H, et al.. Rewritable painting realized from ambient-sensitive fluorescence of ZnO nanoparticles [J]. Sci. Rep., 2017, 7:42232.

[16] ZHANG W, YU S F, FEI L, et al.. Large-area color controllable remote carbon white-light light-emitting diodes [J]. Carbon, 2015, 85:344-350.

[17] ZHU S, MENG Q, WANG L, et al.. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging [J]. Angew. Chem., 2013, 125(14):4045-4049.

[18] YU H, ZHANG H, HUANG H, et al.. ZnO/carbon quantum dots nanocomposites: one-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature [J]. New J. Chem., 2012, 36(4):1031-1035.

[19] GUO D Y, SHAN C X, QU S N, et al.. Highly sensitive ultraviolet photodetectors fabricated from ZnO quantum dots/carbon nanodots hybrid films [J]. Sci. Rep., 2014, 4(6):7469.

[20] GUO D Y, SHAN C X, LIU K K, et al.. Surface plasmon effect of carbon nanodots [J]. Nanoscale, 2015, 7(45):18908-18913.

[21] FU Y S, DU X W, KULINICH S A, et al.. Stable aqueous dispersion of ZnO quantum dots with strong blue emission via simple solution route [J]. J. Am. Chem. Soc., 2008, 129(51):16029-16033.

[22] SHI H Q, LI W N, SUN L W, et al.. Synthesis of silane surface modified ZnO quantum dots with ultrastable, strong and tunable luminescence [J]. Chem. Commun., 2011, 47(43):11921-11923.

[23] PACHOLSKI C, KORNOWSKI A, WELLER H. Self-assembly of ZnO: from nanodots to nanorods [J]. Angew. Chem., 2002, 33(26):1188-1191.

[24] PADMAVATHY N, VIJAYARAGHAVAN R. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study [J]. Sci. Technol. Adv. Mater., 2008, 9(3):43-48.

[25] ZENG H, DUAN G, LI Y, et al.. Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: defect origins and emission controls [J]. Adv. Funct. Mater., 2010, 20(4):561-572.

[26] QU S, WANG X, LU Q, et al.. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots [J]. Angew. Chem., 2012, 51(49):12215.

杨广武, 张守超, 王翠红, 朱飞, 江越. 氧化锌量子点和碳量子点及其复合物的制备与发光性能的研究[J]. 发光学报, 2017, 38(10): 1287. YANG Guang-wu, ZHANG Shou-chao, WANG Cui-hong, ZHU Fei, JIANG Yue. Preparation and Optical Properties of Zinc Oxide, Carbon and Their Quantum Dot Mixture[J]. Chinese Journal of Luminescence, 2017, 38(10): 1287.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!