人工晶体学报, 2020, 49 (10): 1896, 网络出版: 2021-01-09   

微波等离子体化学气相沉积设备微波系统的仿真优化与验证

Simulation Optimization and Verification of a Microwave System for Microwave Plasma Chemical Vapor Deposition Device
作者单位
1 长沙新材料产业研究院有限公司,航天新材料湖南省重点实验室,长沙 410082
2 北京无线电计量测试研究所,北京 100039
摘要
微波等离子体化学气相沉积(MPCVD)法产生的等离子体密度高,材料外延生长过程可控性好且洁净度高,是制备高质量金刚石膜的重要方法。基于谐振腔理论和三维全波电磁场仿真,对MPCVD设备微波系统中谐振腔、模式转换器、样品托等影响微波传输效率及电场分布形态的部件进行设计和优化,并通过对微波传输系统关键参量的测试和监控,研究系统调试变量对金刚石外延生长的影响。基于自研的MPCVD设备,实现较高品质金刚石膜的合成,金刚石有效生长区域为50 mm圆面,外延生长速度10~25 μm/h,单晶样品的表征结果显示合成的金刚石透光率接近理论值,材料的结晶程度良好,氮、硅等杂质含量较低。
Abstract
Microwave plasma chemical vapor deposition (MPCVD) is an important method for synthesis of high-quality diamond film due to its high plasma density, good controllability and high cleanliness in the deposition process. Based on the theory of resonant cavity and three-dimensional full-wave electromagnetic field simulation, the microwave plasma cavity, mode converter and substrate holder shapes, which have a great influence on microwave coupling efficiency and electric field distribution, were designed and optimized. By testing and monitoring the key parameters in the microwave transmission system, influence of the tuning variables on diamond deposition were analyzed. With the MPCVD device proposed in this paper, high quality diamond films were deposited with an effective circular growth area with a diameter of 50 mm at a growth rate of 10 μm/h to 25 μm/h. The characterization results show that the single crystal diamond films have optical transmittance close to theoretical threshold and an excellent crystalline structure, with low impurity contents of nitrogen and silicon.

王心洋, 曹光宇, 黄翀. 微波等离子体化学气相沉积设备微波系统的仿真优化与验证[J]. 人工晶体学报, 2020, 49(10): 1896. WANG Xinyang, CAO Guangyu, HUANG Chong. Simulation Optimization and Verification of a Microwave System for Microwave Plasma Chemical Vapor Deposition Device[J]. Journal of Synthetic Crystals, 2020, 49(10): 1896.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!