人工晶体学报, 2020, 49 (10): 1896, 网络出版: 2021-01-09   

微波等离子体化学气相沉积设备微波系统的仿真优化与验证

Simulation Optimization and Verification of a Microwave System for Microwave Plasma Chemical Vapor Deposition Device
作者单位
1 长沙新材料产业研究院有限公司,航天新材料湖南省重点实验室,长沙 410082
2 北京无线电计量测试研究所,北京 100039
摘要
微波等离子体化学气相沉积(MPCVD)法产生的等离子体密度高,材料外延生长过程可控性好且洁净度高,是制备高质量金刚石膜的重要方法。基于谐振腔理论和三维全波电磁场仿真,对MPCVD设备微波系统中谐振腔、模式转换器、样品托等影响微波传输效率及电场分布形态的部件进行设计和优化,并通过对微波传输系统关键参量的测试和监控,研究系统调试变量对金刚石外延生长的影响。基于自研的MPCVD设备,实现较高品质金刚石膜的合成,金刚石有效生长区域为50 mm圆面,外延生长速度10~25 μm/h,单晶样品的表征结果显示合成的金刚石透光率接近理论值,材料的结晶程度良好,氮、硅等杂质含量较低。
Abstract
Microwave plasma chemical vapor deposition (MPCVD) is an important method for synthesis of high-quality diamond film due to its high plasma density, good controllability and high cleanliness in the deposition process. Based on the theory of resonant cavity and three-dimensional full-wave electromagnetic field simulation, the microwave plasma cavity, mode converter and substrate holder shapes, which have a great influence on microwave coupling efficiency and electric field distribution, were designed and optimized. By testing and monitoring the key parameters in the microwave transmission system, influence of the tuning variables on diamond deposition were analyzed. With the MPCVD device proposed in this paper, high quality diamond films were deposited with an effective circular growth area with a diameter of 50 mm at a growth rate of 10 μm/h to 25 μm/h. The characterization results show that the single crystal diamond films have optical transmittance close to theoretical threshold and an excellent crystalline structure, with low impurity contents of nitrogen and silicon.
参考文献

[1] Shinichi S. Single crystal diamond wafers for high power electronics[J]. Diamond and Related Materials, 2016, 65: 168-175.

[2] Achard J, Issaoui R, Tallaire A, et al. Freestanding CVD boron doped diamond single crystals:a substrate for vertical power electronic devices[J]. Physica Status Solidi (a), 2012, 209(9): 1651-1658.

[3] Manfred T. MPACVD-diamond windows for high-power and long-pulse millimeter wave transmission[J]. Diamond and Related Materials, 2001, 10(9-10): 1692-1699.

[4] Tallaire A, Achard J, Silva F, et al. Growth of large size diamond single crystals by plasma assisted chemical vapour deposition:recent achievements and remaining challenges[J]. Comptes Rendus Physique, 2013, 14(2/3):169-184.

[5] Achard J, Silva F, Tallaire A, et al. High quality MPACVD diamond single crystal growth: high microwave power density regime[J]. Journal of Physics D: Applied Physics, 2007, 40(20): 6175-6188.

[6] Achard J, Tallaire A, Sussmann R, et al. The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD[J]. Journal of Crystal Growth, 2005, 284(3/4): 396-405.

[7] Silva F, Bonnin X, Scharpf J, et al. Microwave analysis of PACVD diamond deposition reactor based on electromagnetic modelling[J]. Diamond and Related Materials, 2010, 19(5/6): 397-403.

[8] Füner M, Wild C, Koidl P. Simulation and development of optimized microwave plasma reactors for diamond deposition[J]. Surface and Coatings Technology, 1999, 116-119: 853-862.

[9] Mallik A, Pal K, Dandapat N, et al. Influence of the microwave plasma CVD reactor parameters on substrate thermal management for growing large area diamond coatings inside a 915MHz and moderately low power unit[J]. Diamond and Related Materials, 2012, 30: 53-61.

[10] Hagelaar G, Hassouni K, Gicquel A. Interaction between the electromagnetic fields and the plasma in a microwave plasma reactor[J]. Journal of Applied Physics, 2004, 96(4): 1819-1828.

[11] Hassouni K, Silva F, Gicquel A. Modelling of diamond deposition microwave cavity generated plasmas[J]. Journal of Physics D: Applied Physics, 2010, 43: 153001

[12] Yamada H, Chayahara A, Mokuno Y. Simplified description of microwave plasma discharge for chemical vapor deposition of diamond[J]. Journal of Applied Physics, 2007, 101(6).

[13] 廖 斌,张 莲,安同一,等.圆柱腔内微波等离子体激励的研究[J].华东师范大学学报:自然科学版,2005,2:52-57.

[14] Su J, Li Y, Liu Y, et al. Development of cylinderical cavity type microwave plasma CVD reactor for diamond films deposition[C]. IEEE International Conference on Plasma Science, 2013.

[15] Yamada H, Chayahara A, Mokuno Y, et al. Numerical and experimental studies of high growth-rate over area with 1-inch in diameter under moderate input-power by using MWPCVD[J]. Diamond and Related Materials, 2008, 17(7/10): 1062-1066.

[16] Yamada H, Chayahara A, Mokuno Y, et al. Microwave plasma generated in a narrow gap to achieve high power efficiency during diamond growth[J]. Diamond and Related Materials, 2009, 18(2/3): 117-120.

[17] Füner M, Wild C, Koidl P. Novel microwave plasma reactor for diamond synthesis[J]. Applied Physics Letters, 1998, 72(10): 1149-1151.

[18] 李义锋,唐伟忠,苏静杰,等. 环形天线-椭球谐振腔式MPCVD装置高功率下沉积高品质金刚石膜[J].人工晶体学报,2016,45(8):2028-2033.

[19] Asmussen K, Grotjohn T, Schuelke D, et al. Multiple substrate microwave plasma-assisted chemical vapor deposition single crystal diamond synthesis[J]. Applied Physics Letter, 2008, 93(3): 1486.

[20] Silva F, Hassouni K, Bonnin X, et al. Microwave engineering of plasma-assisted CVD reactors for diamond deposition[J]. J Phys Condens Matter, 2009, 21(36): 364202.

[21] Shreya N, Yajun G, Asmussen J. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions[J]. Review of Entific Instruments, 2015, 86(7): 074701.

[22] Yamada H, Chayahara A, Mokuno Y, et al. Qualitative correspondences of experimentally obtained growth rates and morphology of single-crystal diamond with numerical predictions of plasma and gas dynamics in microwave discharges for various substrate holder shapes[J]. Japanese Journal of Applied Physics, 2006, 45(10B): 8177-8182.

[23] Nad S, Asmussen J. Analyses of single crystal diamond substrates grown in a pocket substrate holder via MPACVD[J]. Diamond and Related Materials, 2016, 66:36-46.

[24] 苏卫中,禹庆荣,杨 彬,等.微波等离子体激发用大功率微波模式转换器[J].电子工业专用设备:光伏制造工艺与设备,2019,275:31-36.

[25] Chen S, Shen B, Zhang J, et al. Evaluation on residual stress of silicon-doped CVD Diamond films using X-ray diffraction and raman spectroscopy[J]. Transaction of nonferrous Metals Society of China, 2012, 22: 3221-3026.

[26] 叶永权,匡同春,雷淑梅.金刚石(膜)的拉曼光谱表征技术进展[J]. 金刚石与磨料磨具工程, 2007,5:16-21.

[27] Kirillov D, Reynolds G. Linewidths of phonon lines of natural and synthetic diamonds[J]. Applied Physics Letters, 1994, 65(13): 1641-3.

[28] Philip M, Simon C, Andy J, et al. Identification of synthetic diamond grown using chemical vapor deposition (CVD)[J]. Gems and Gemology, 2004. 40(2): 2-25.

[29] 吕反修.金刚石膜制备与应用上卷[M].北京:科学出版社,2014: 630-632.

[30] Bernhard D. Hand book of spectral lines in diamond volume1: tables and interpretations[M]. New York: Springer-Verlag Berlin Heidelberg, 2012: 93-123.

[31] Kiflawi I, Mayer E, Spear M, et al. Infrared absorption by the single nitrogen and a defect centres in diamond[J]. Philosophical Magazine Part B, 1994, 69(6): 1141-1147.

[32] 梁中翥,梁静秋,郑 娜,等.掺氮金刚石的光学吸收与氮杂质含量的分析研究[J].物理学报,2009,58(11):8039-8043.

[33] Chrenko R, Strong M, Tuft E. Dispersed paramagnetic nitrogen content of large laboratory diamonds[J]. Philosophical Magazine, 1971, 23(182): 313-318.

[34] Boyd R, Kiflawi I, Woods S. The relationship between infrared absorption and the a defect concentration in diamond[J]. Philosophical Magazine Part B, 1994, 69(6): 1149-1153.

[35] Boyd R, Kiflawi I, Woods S. Infrared absorption by the B nitrogen aggregate in diamond[J]. Philosophical Magazine Part B, 1995, 72(3): 351-361.

[36] 武改朝,余晓艳.金刚石与杂质氮的关系研究[EB/OL].北京:中国科技论文在线[2007-05-23].http://www.paper.edu.cn/releasepaper/content/200705-386.

王心洋, 曹光宇, 黄翀. 微波等离子体化学气相沉积设备微波系统的仿真优化与验证[J]. 人工晶体学报, 2020, 49(10): 1896. WANG Xinyang, CAO Guangyu, HUANG Chong. Simulation Optimization and Verification of a Microwave System for Microwave Plasma Chemical Vapor Deposition Device[J]. Journal of Synthetic Crystals, 2020, 49(10): 1896.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!