中国激光, 2018, 45 (3): 0307007, 网络出版: 2018-03-14   

拉曼光谱成像技术及其在生物医学中的应用 下载: 1447次特邀综述

Raman Spectroscopic Imaging Technology and Its Biomedical Applications
作者单位
1 东北大学中荷生物医学与信息工程学院, 辽宁 沈阳 110016
2 斯蒂文斯理工学院电气与计算机工程系, 美国 霍博肯 NJ07030
摘要
拉曼光谱是一种用于分析分子化学成分、结构等信息的检测技术,具有信息丰富、制样简单、水的干扰小、非侵入等特点,在生物医学等研究领域中具有广泛应用。拉曼光谱成像作为一种结合拉曼光谱和成像的混合模式,通过采集空间中每个像素处的拉曼光谱信息,将分子信息在空间上展现,并定性、定量与定位地分析物质分子。相对于传统的拉曼光谱测量,拉曼光谱成像可额外提供生物医学应用中极为重要的空间信息,因此,以图像形式观测物质成分与结构等信息的拉曼光谱成像技术在生物样本检测、临床诊断及治疗等生物医学领域中具有重要的应用价值。从拉曼光谱原理出发,介绍了拉曼光谱成像技术及其发展,并综述了近年来拉曼光谱成像技术在生物医学领域中的应用,最后总结并展望了拉曼光谱成像技术及其发展趋势。
Abstract
Raman spectroscopy is an analytical tool for chemical compositions and structures of molecules. Because it is a non-invasive technique with rich biochemical information, minimal sample preparation and little interference of water, Raman spectroscopy has been widely used in the field of biomedicine. Raman spectroscopic imaging is the combination of Raman spectroscopy and imaging, which collects Raman spectrum at each pixel for the entire region. Thus, both spatial and spectral information can be captured for positioning analysis of material molecules qualitatively and quantificationally. Compared with traditional Raman spectroscopy, Raman imaging can provide additional spatial information about the sample, which is extremely important for biomedical applications. Therefore, Raman spectroscopic imaging technique with both biochemical and spatial information shows significant values in the field of biomedicine, such as biological sample examination, clinical diagnosis, and treatment. The Raman spectroscopy technique and its development are introduced based on the principle of Raman spectroscopy. The application of Raman spectroscopy technique in the field of biomedicine in recent years is summarized. Finally, the summary and prospects of Raman spectroscopic imaging technology are discussed.
参考文献

[1] Raman C V. A change of wave-length in light scattering[J]. Nature, 1928, 121(3051): 619.

[2] Asher S A. UV resonance Raman spectroscopy for analytical, physical, and biophysical chemistry: Part 2[J]. Analytical Chemistry, 1993, 65(4): 201A-210A.

[3] 张延会, 吴良平, 孙真荣. 拉曼光谱技术应用进展[J]. 化学教学, 2006(4): 32-35.

[4] Tunnell J W, Haka A S, McGee S A, et al. Diagnostic tissue spectroscopy and its applications to gastrointestinal endoscopy[J]. Techniques in Gastrointestinal Endoscopy, 2003, 5(2): 65-73.

[5] 徐斌, 林漫漫, 姚辉璐, 等. 拉曼光谱技术测量单个红细胞的血红蛋白浓度[J]. 中国激光, 2016, 43(1): 0115003.

    Xu B, Lin M M, Yao H L, et al. Measurement of hemoglobin concentration of single red blood cell using Raman spectroscopy[J]. Chinese Journal of Lasers, 2016, 43(1): 0115003.

[6] 郑家文, 杨唐文. 基于拉曼光谱特征的生物组织识别方法[J]. 激光与光电子学进展, 2017, 54(5): 053001.

    Zheng J W, Yang T W. Classification method of biological tissues based on Raman spectrum features[J]. Laser & Optoelectronics Progress, 2017, 54(5): 053001.

[7] 龚小进, 王刚, 欧中华, 等. 高光谱成像技术在生物医学中的应用[J]. 激光生物学报, 2016, 25(4): 289-294.

    Gong X J, Wang G, Ou Z H, et al. The application of hyperspectral imaging technique in biomedicine[J]. Acta Laser Biology Sinica, 2016, 25(4): 289-294.

[8] 朱新建, 宋小磊, 汪待发, 等. 荧光分子成像技术概述及研究进展[J]. 中国医疗器械杂志, 2008, 32(1): 1-5.

    Zhu X J, Song X L, Wang D F, et al. Introduction of fluorescence molecular imaging technology and its development[J]. Chinese Journal of Medical Instrumentation, 2008, 32(1): 1-5.

[9] 谭波, 胡建明, 杨盼, 等. 光声成像: 一种新兴的检测方式[J]. 激光与光电子学进展, 2013, 50(4): 040005.

    Tan B, Hu J M, Yang P, et al. Photoacoustic tomography imaging: An emerging detection way[J]. Laser & Optoelectronics Progress, 2013, 50(4): 040005.

[10] Dhakal S, Chao K L, Qin J W, et al. Identification and evaluation of composition in food powder using point-scan Raman spectral imaging[J]. Applied Sciences, 2017, 7(1): 7010001.

[11] Qin J W, Kim M S, Chao K L, et al. Line-scan Raman imaging and spectroscopy platform for surface and subsurface evaluation of food safety and quality[J]. Journal of Food Engineering, 2017, 198: 17-27.

[12] Pappas D, Smith B W,Winefordner J D. Raman imaging for two-dimensional chemical analysis[J]. Applied Spectroscopy Reviews, 2000, 35(1/2): 1-23.

[13] Samuel A Z, Yabumoto S, Kawamura K, et al. Rapid microstructure characterization of polymer thin films with 2D-array multifocus Raman microspectroscopy[J]. Analyst, 2015, 140(6): 1847-1851.

[14] Chen S, Ong Y H, Liu Q. Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation[C]. SPIE, 2012, 8553: 85531R.

[15] Lohumi S, Kim M S, Qin J W, et al. Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials[J]. Trends in Analytical Chemistry, 2017, 93: 183-198.

[16] Opilik L, Schmid T, Zenobi R. Modern Raman imaging: Vibrational spectroscopy on the micrometer and nanometer scales[J]. Annual Review of Analytical Chemistry, 2013, 6(1): 379-398.

[17] Bowden M, Gardiner D J, Rice G, et al. Line-scanned micro Raman spectroscopy using a cooled CCD imaging detector[J]. Journal of Raman Spectroscopy, 1990, 21(1): 37-41.

[18] Ode T. Nanophoton-the latest laser microscope manufacturing company[J]. The Review of Laser Engineering, 2006, 34(7): 519-521.

[19] Stewart S, Priore R J, Nelson M P, et al. Raman imaging[J]. Annual Review of Analytical Chemistry, 2012, 5(1): 337-360.

[20] Papour A, Kwak J H, Taylor Z, et al. Wide-field Raman imaging for bone detection in tissue[J]. Biomedical Optics Express, 2015, 6(10): 3892-3897.

[21] Puppels G J, Grond M, Greve J. Direct imaging Raman microscope based on tunable wavelength excitation and narrow-band emission detection[J]. Applied Spectroscopy, 1993, 47(8): 1256-1267.

[22] Baronti S, Casini A, Lotti F, et al. Multispectral imaging system for the mapping of pigments in works of art by use of principal-component analysis[J]. Applied Optics, 1998, 37(8): 1299-1309.

[23] Turner J F,Treado P J. LCTF Raman chemical imaging in the near infrared[C]. SPIE, 1997, 3061: 280-283.

[24] Morris H R, Hoyt C C, Miller P, et al. Liquid crystal tunable filter Raman chemical imaging[J]. Applied Spectroscopy, 1996, 50(6): 805-811.

[25] Schaeberle M D, Tuschel D D, Treado P J. Raman chemical imaging of microcrystallinity in silicon semiconductor devices[J]. Applied Spectroscopy, 2001, 55(3): 257-266.

[26] Morris H R, Hoyt C C, Treado P J. Imaging spectrometers for fluorescence and Raman microscopy: Acousto-optic and liquid crystal tunable filters[J]. Applied Spectroscopy, 1994, 48(7): 857-866.

[27] Oshima Y, Sato H, Kajiura-Kobayashi H, et al. Light sheet-excited spontaneous Raman imaging of a living fish by optical sectioning in a wide field Raman microscope[J]. Optics Express, 2012, 20(15): 16195-16204.

[28] Johnson W R, Wilson D W, Bearman G. All-reflective snapshot hyperspectral imager for ultraviolet and infrared applications[J]. Optics Letters, 2005, 30(12): 1464-1466.

[29] Schmlzlin E, Moralejo B, Rutowska M, et al. Raman imaging with a fiber-coupled multichannel spectrograph[J]. Sensors, 2014, 14(11): 21968-21980.

[30] Okuno M, Hamaguchi H. Multifocus confocal Raman microspectroscopy for fast multimode vibrational imaging of living cells[J]. Optics Letters, 2010, 35(24): 4096-4098.

[31] McCain S T, Gehm M E, Wang Y, et al. Coded aperture Raman spectroscopy for quantitative measurements of ethanol in a tissue phantom[J]. Applied Spectroscopy, 2006, 60(6): 663-671.

[32] Feng W Y, Rueda H, Fu C, et al. 3D compressive spectral integral imaging[J]. Optics Express, 2016, 24(22): 24859-24871.

[33] Wei D, Chen S, Ong Y H, et al. Fast wide-field Raman spectroscopic imaging based on simultaneous multi-channel image acquisition and Wiener estimation[J]. Optics Letters, 2016, 41(12): 2783-2786.

[34] Chen S, Wang G, Cui X Y, et al. Stepwise method based on Wiener estimation for spectral reconstruction in spectroscopic Raman imaging[J]. Optics Express, 2017, 25(2): 1005-1018.

[35] Chen S, Ong Y H, Lin X Q, et al. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background[J]. Biomedical Optics Express, 2015, 6(7): 2633-2648.

[36] Chen S, Lin X, Yuen C, et al. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation[J]. Optics Express, 2014, 22(10): 12102-12114.

[37] Schlücker S, Schaeberle M D, Huffman S W, et al. Raman microspectroscopy: A comparison of point, line, and wide-field imaging methodologies[J]. Analytical Chemistry, 2003, 75(16): 4312-4318.

[38] Ramsey J, Ranganathan S, McCreery R L, et al. Performance comparisons of conventional and line-focused surface Raman spectrometers[J]. Applied Spectroscopy, 2001, 55(6): 767-773.

[39] 陈涛, 虞之龙, 张先念, 等. 相干拉曼散射显微术[J]. 中国科学: 化学, 2012, 42(1): 1-16.

    Chen T, Yu Z L, Zhang X N, et al. Coherent Raman scattering microscopy[J]. Scientia Sinica Chimica, 2012, 42(1): 1-16.

[40] 周明辉, 廖春艳, 任兆玉, 等. 表面增强拉曼光谱生物成像技术及其应用[J]. 中国光学, 2013, 6(5): 633-642.

    Zhou M H, Liao C Y, Ren Z Y, et al. Bioimaging technologies based on surface-enhanced Raman spectroscopy and their applications[J]. Chinese Optics, 2013, 6(5): 633-642.

[41] 崔晗, 王允, 邱丽荣, 等. 基于最大似然法的共焦拉曼光谱成像方法[J]. 光谱学与光谱分析, 2017, 37(5): 1571-1575.

    Cui H, Wang Y, Qiu L R, et al. Confocal Raman image method with maximum likelihood method[J]. Spectroscopy and Spectral Analysis, 2017, 37(5): 1571-1575.

[42] Movasaghi Z, Rehman S, Rehman I U. Raman spectroscopy of biological tissues[J]. Applied Spectroscopy Reviews, 2007, 42(5): 493-541.

[43] Zhang L, Henson M J, Sekulic S S. Multivariate data analysis for Raman imaging of a model pharmaceutical tablet[J]. Analytica Chimica Acta, 2005, 545(2): 262-278.

[44] Bergner N, Bocklitz T, Romeike B F M, et al. Identification of primary tumors of brain metastases by Raman imaging and support vector machines[J]. Chemometrics and Intelligent Laboratory Systems, 2012, 117(6): 224-232.

[45] Tolstik T, Marquardt C, Matthus C, et al. Discrimination and classification of liver cancer cells and proliferation states by Raman spectroscopic imaging[J]. Analyst, 2014, 139(22): 6036-6043.

[46] Weng S, Xu X Y, Li J S, et al. Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer[J]. Journal of Biomedical Optics, 2017, 22(10): 1-10.

[47] Zhang X, Roeffaers M B J, Basu S, et al. Label-free live-cell imaging of nucleic acids using stimulated Raman scattering microscopy[J]. Chemphyschem, 2012, 13(4): 1054-1059.

[48] Lu F K, Basu S, Igras V, et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11624-11629.

[49] 孟令晶, 纪晓露, 李自达, 等. 单个肝癌细胞的拉曼成像研究[J]. 激光与光电子学进展, 2011, 48(2): 021703.

    Meng L J, Ji X L, Li Z D, et al. Mono-hepatocellular carcinoma by Raman mapping[J]. Laser & Optoelectronics Progress, 2011, 48(2): 021703.

[50] Kang J W, So P T C, Dasari R R, et al. High resolution live cell Raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap[J]. Nano Letters, 2015, 15(3): 1766-1772.

[51] Stiebing C, Meyer T, Rimke I, et al. Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake[J]. Journal of Biophotonics, 2017, 10(9): 1217-1226.

[52] Kirsch M, Schackert G, Salzer R, et al. Raman spectroscopic imaging for in vivo detection of cerebral brain metastases[J]. Analytical and Bioanalytical Chemistry, 2010, 398(4): 1707-1713.

[53] Zhou Y, Liu C H, Pu Y, et al. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies[C]. SPIE, 2016, 9703: 97031R.

[54] 王宇宸, 李杨, 吴歆怡, 等. 拉曼成像技术在脑胶质瘤检测中的研究进展[J]. 中国临床药学杂志, 2016, 25(6): 398-401.

    Wang Y C, Li Y, Wu X Y, et al. Research progress of application of Raman imaging technology in detection of brain glioma[J]. Chinese Journal of Clinical Pharmacy, 2016, 25(6): 398-401.

[55] Koljenovi S, Choo-Smith L P, Bakker Schut T C, et al. Discriminating vital tumor from necrotic tissue in human glioblastoma tissue samples by Raman spectroscopy[J]. Laboratory Investigation, 2002, 82(10): 1265-1277.

[56] Amharref N, Beljebbar A, Dukic S, et al. Discriminating healthy from tumor and necrosis tissue in rat brain tissue samples by Raman spectral imaging[J]. Biochimica et Biophysica Acta, 2007, 1768(10): 2605-2615.

[57] Krafft C, Sobottka S B, Schackert G, et al. Raman and infrared spectroscopic mapping of human primary intracranial tumors: A comparative study[J]. Journal of Raman Spectroscopy, 2006, 37(1/2/3): 367-375.

[58] Freudiger C W, Pfannl R, Orringer D A, et al. Multicolored stain-free histopathology with coherent Raman imaging[J]. Laboratory Investigation, 2012, 92(10): 1492-1502.

[59] Kast R, Auner G, Yurgelevic S, et al. Identification of regions of normal grey matter and white matter from pathologic glioblastoma and necrosis in frozen sections using Raman imaging[J]. Journal of Neuro-Oncology, 2015, 125(2): 287-295.

[60] Hartsuiker L, Zeijen N J L, Terstappen L W M M, et al. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging[J]. Analyst, 2010, 135(12): 3220-3226.

[61] Brozek-Pluska B, Musial J, Kordek R, et al. Raman spectroscopy and imaging: Applications in human breast cancer diagnosis[J]. Analyst, 2012, 137(16): 3773-3780.

[62] Lee S, Chon H, Lee J, et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging[J]. Biosensors and Bioelectronics, 2013, 51: 238-243.

[63] Harmsen S, Huang R, Wall M A, et al. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging[J]. Science Translational Medicine, 2015, 7(271): 271ra7.

[64] Manciu F S, Ciubuc J D, Parra K, et al. Label-free Raman imaging to monitor breast tumor signatures[J]. Technology in Cancer Research & Treatment, 2017, 16(4): 461-469.

[65] Schaeberle M D, Kalasinsky V F, Luke J L, et al. Raman chemical imaging: Histopathology of inclusions in human breast tissue[J]. Analytical Chemistry, 1996, 68(11): 1829-1833.

[66] Maier J, Panza J, Drauch A, et al. Raman molecular imaging of tissue and cell samples using tunable multiconjugate filter[C]. SPIE, 2006, 6380: 638009.

[67] Yosef H K, Krau S D, Lechtonen T, et al. Noninvasive diagnosis of high-grade urothelial carcinoma in urine by Raman spectral imaging[J]. Analytical Chemistry, 2017, 89(12): 6893-6899.

[68] Li M, Banerjee S R, Zheng C, et al. Ultrahigh affinity Raman probe for targeted live cell imaging of prostate cancer[J]. Chemical Science, 2016, 7(11): 6779-6785.

[69] Duindam H J, Vrensen G F, Otto C, et al. New approach to assess the cholesterol distribution in the eye lens: Confocal Raman microspectroscopy and filipin cytochemistry[J]. Journal of Lipid Research, 1995, 36(5): 1139-1146.

[70] Sijtsema N M, Duindam J J, Puppels G J, et al. Imaging with extrinsic Raman labels[J]. Applied Spectroscopy, 1996, 50(5): 545-551.

[71] Gellermann W, Ermakov I V, McClane R W, et al. Raman imaging of human macular pigments[J]. Optics Letters, 2002, 27(10): 833-835.

[72] Ammar D A, Lei T C, Kahook M Y, et al. Imaging the intact mouse cornea using coherent anti-Stokes Raman scattering (CARS)[J]. Investigative Ophthalmology & Visual Science, 2013, 54(8): 5258-5265.

[73] Kaji Y, Akiyama T, Segawa H, et al. Raman microscopy: A noninvasive method to visualize the localizations of biomolecules in the cornea[J]. Cornea, 2017, 36(s1): 67-71.

[74] Timlin J A, Carden A, Morris M D, et al. Spatial distribution of phosphate species in mature and newly generated mammalian bone by hyperspectral Raman imaging[J]. Journal of Biomedical Optics, 1999, 4(1): 28-34.

[75] Crane N J, Morris M D, Ignelzi M A, et al. Raman imaging demonstrates FGF2-induced craniosynostosis in mouse calvaria[J]. Journal of Biomedical Optics, 2005, 10(3): 031119.

[76] Crane N J, Popescu V, Morris M D, et al. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization[J]. Bone, 2006, 39(3): 434-442.

[77] Chan K L A, Zhang G J, Tomic-Canic M, et al. A coordinated approach to cutaneous wound healing: Vibrational microscopy and molecular biology[J]. Journal of Cellular and Molecular Medicine, 2008, 12(5b): 2145-2154.

[78] Braiman-Wiksman L, Solomonik I, Spira R, et al. Novel insights into wound healing sequence of events[J]. Toxicologic Pathology, 2007, 35(6): 767-779.

[79] Gniadecka M, Wulf H C, Mortensen N N, et al. Diagnosis of basal cell carcinoma by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 1997, 28(2/3): 125-129.

[80] Nijssen A, Bakker Schut T C, Heule F, et al. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy[J]. Journal of Investigative Dermatology, 2002, 119(1): 64-69.

[81] Piredda P, Berning M, Boukamp P, et al. Subcellular Raman microspectroscopy imaging of nucleic acids and tryptophan for distinction of normal human skin cells and tumorigenic keratinocytes[J]. Analytical Chemistry, 2015, 87(13): 6778-6785.

[82] Saar B G, Contreras-Rojas L R,Xie X S, et al. Imaging drug delivery to skin with stimulated Raman scattering microscopy[J]. Molecular Pharmaceutics, 2011, 8(3): 969-975.

[83] Smith G P S, Holroyd S E, Reid D C W, et al. Raman imaging processed cheese and its components[J]. Journal of Raman Spectroscopy, 2017, 48(3): 374-383.

[84] Tan Z, Lou T T, Huang Z X, et al. Single-drop Raman imaging exposes the trace contaminants in milk[J]. Journal of Agricultural and Food Chemistry, 2017, 65(30): 6274-6281.

[85] Brodard P, Roth S, Vorlet O. Non-destructive localization and identification of active pharmaceutical compounds by Raman chemical imaging[J]. Chimia, 2013, 67(12/13): 923-924.

[86] Bhogadi R K, Satyanarayana A, Rao N S, et al. Simple, fast and economic way for estimation of calcipotriene crystal size and particle distribution in its drug product. Raman microscope particle size verses pre-calci content-an approximation by HPLC analysis[J]. Analytical Chemistry Letters, 2017, 7(1): 1-10.

[87] Batonneau Y, Sobanska S, Laureyns J, et al. Confocal microprobe Raman imaging of urban tropospheric aerosol particles[J]. Environmental Science & Technology, 2006, 40(4): 1300-1306.

[88] Colares C J G, Pastore T C M, Coradin V T R, et al. Exploratory analysis of the distribution of lignin and cellulose in woods by Raman imaging and chemometrics[J]. Journal of the Brazilian Chemical Society, 2015, 26(6): 1297-1305.

路交, 朱姗姗, 崔笑宇, 陈硕, 姚育东. 拉曼光谱成像技术及其在生物医学中的应用[J]. 中国激光, 2018, 45(3): 0307007. Lu Jiao, Zhu Shanshan, Cui Xiaoyu, Chen Shuo, Yao Yudong. Raman Spectroscopic Imaging Technology and Its Biomedical Applications[J]. Chinese Journal of Lasers, 2018, 45(3): 0307007.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!