Photonics Research, 2015, 3 (5): 05000283, Published Online: Jan. 6, 2016  

Deep-UV fluorescence lifetime imaging microscopy Download: 849次

Author Affiliations
1 Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology,Hawthorn, VIC 3122, Australia
2 Department of Mechanical Engineering, Eindhoven University of Technology,Postbus 513, 5600MB Eindhoven, The Netherlands
3 Optoelectronics Research Centre, University of Southampton, Southampton, SO17 1BJ, UK
4 Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, VIC 3168, Australia
5 Ecole Polytechnique Fédérale de Lausanne, Rue de la Maladiére 71b, CH—2002 Neuchatel, Switzerland
6 Center for Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Abstract
A novel fluorescence lifetime imaging microscopy (FLIM) working with deep UV 240–280 nm wavelength excitations has been developed. UV-FLIM is used for measurement of defect-related fluorescence and its changes upon annealing from femtosecond laser-induced modifications in fused silica. This FLIM technique can be used with microfluidic and biosamples to characterize temporal characteristics of fluorescence upon UV excitation, a capability easily added to a standardmicroscope-based FLIM. UV-FLIMwas tested to show annealing of the defects induced by silica structuringwith ultrashort laser pulses. Frequency-domain fluorescencemeasurementswere converted into the time domain to extract long fluorescence lifetimes from defects in silica.
References

[1] Y. Bellouard, A. Said, M. Dugan, and P. Bado, “Monolithic threedimensional integration of micro-fluidic channels and optical waveguides in fused silica,” in Materials Research Society Symposium Proceedings (Materials Research Society, 1999; 2004), Vol. 782, pp. 63–68.

[2] A. Schaap, Y. Bellouard, and T. Rohrlack, “Optofluidic lab-on-achip for rapid algae population screening,” Biomed. Opt. Express 2, 658–664 (2011).

[3] Y. Bellouard, A. Said, and P. Bado, “Integrating optics and micromechanics in a single substrate: a step toward monolithic integration in fused silica,” Opt. Express 13, 6635–6644 (2005).

[4] M. Beresna, M. Gecevicius, P. G. Kazansky, and T. Gertus, “Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass,” Appl. Phys. Lett. 98, 201101 (2011).

[5] K. Yamasaki, S. Juodkazis, M. Watanabe, H.-B. Sun, S. Matsuo, and H. Misawa, “Recording by micro-explosion and two-photon reading of three-dimensional optical memory in polymethylmethacrylate films,” Appl. Phys. Lett. 76, 1000–1002 (2000).

[6] Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, “Selforganized nanogratings in glass irradiated by ultrashort light pulses,” Phys. Rev. Lett. 91, 247405 (2003).

[7] V. Bhardwaj, E. Simova, P. Rajeev, C. Hnatovsky, R. Taylor, D. Rayner, and P. Corkum, “Optically produced arrays of planar nanostructures inside fused silica,” Phys. Rev. Lett. 96, 57404 (2006).

[8] F. A. Umran, Y. Liao, M. M. Elias, K. Sugioka, R. Stoian, G. Cheng, and Y. Cheng, “Formation of nanogratings in a transparent material with tunable ionization property by femtosecond laser irradiation,” Opt. Express 21, 15259–15267 (2013).

[9] E. G. Gamaly and A. V. Rode, “Physics of ultra-short laser interaction with matter: From phonon excitation to ultimate transformations,” Prog. Quantum Electron. 37, 215–323 (2013).

[10] C. Hnatovsky, V. Shvedov, W. Krolikowski, and A. Rode, “Revealing local field structure of focused ultrashort pulses,” Phys. Rev. Lett. 106, 123901 (2011).

[11] R. Buividas, M. Mikutis, and S. Juodkazis, “Surface and bulk structuring of materials by ripples with long and short laser pulses: recent advances,” Prog. Quantum Electron. 38, 119– 156 (2014).

[12] K. P. Ghiggino, M. R. Harris, and P. G. Spizzirri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3003 (1992).

[13] A. Clayton, F. Walker, S. Orchard, C. Henderson, D. Fuchs, J. Rothacker, E. Nice, and A. Burgess, “Ligand-induced dimertetramer transition during the activation of the cell surface epidermal growth factor receptor-A multidimensional microscopy analysis,” J. Biol. Chem. 280, 30392–30399 (2005).

[14] V. R. Caiolfa, M. Zamai, G. Malengo, A. Andolfo, C. D. Madsen, J. Sutin, M. A. Digman, E. Gratton, F. Blasi, and N. Sidenius, “Monomer dimer dynamics and distribution of GPI-anchored uPAR are determined by cell surface protein assemblies,” J. Cell Biol. 179, 1067–1082 (2007).

[15] P. Vita, N. Kuril ik, S. Jur nas, A. ukauskas, A. Lunev, Y. Bilenko, J. Zhang, X. Hu, J. Deng, T. Katona, and R. Gaska, “Deep-ultraviolet light-emitting diodes for frequency domain measurements of fluorescence lifetime in basic biofluorophores,” Appl. Phys. Lett. 87, 084106 (2005).

[16] K. Y. Nelson, D. W. McMartin, C. K. Yost, K. J. Runtz, and T. Ono, “Point-of-use water disinfection using uv light-emitting diodes to reduce bacterial contamination,” Environ. Sci. Pollut. Res. 20, 5441–5448 (2013).

[17] M. Shatalov, A. Lunev, X. Hu, O. Bilenko, I. Gaska, W. Sun, J. Yang, A. Dobrinsky, Y. Bilenko, R. Gaska, and M. Shur, “Performance and applications of deep uv led,” Int. J. High Speed Electron. Syst. 21, 1250011 (2012).

[18] M. Würtele, T. Kolbe, M. Lipsz, A. Külberg, M. Weyers, M. Kneissl, and M. Jekel, “Application of gan-based ultraviolet-c light emitting diodes-uv leds-for water disinfection,” Water Res. 45, 1481–1489 (2011).

[19] J. T. Wessels, U. Pliquett, and F. S. Wouters, “Light-emitting diodes in modern microscopy—from David to Goliath,” Cytometry Part A 81A, 188–197 (2012).

[20] R. A. Judge, K. Swift, and C. González, “An ultraviolet fluorescence- based method for identifying and distinguishing protein crystals,” Acta Crystallogr. Sect. D D61, 60–66 (2005).

[21] R. Kubiliūt , K. Maximova, A. Lajevardipour, J. Yong, J. S. Hartley, A. S. M. Mohsin, P. Blandin, J. W. M. Chon, A. H. A. Clayton, M. Sentis, P. R. Stoddart, A. Kabashin, R. Rotomskis, and S. Juodkazis, “Ultra-pure, water-dispersed au nanoparticles produced by femtosecond laser ablation and fragmentation,” Int. J. Nanomed. 8, 2601–2611 (2013).

[22] G. Gervinskas, P. R. Stoddart, A. H. A. Clayton, A. ukauskas, and S. Juodkazis, “Light extraction and fluorescence in UV micro-fluidic applications,” Proc. AIP 21, 29 (2012)

[23] L. Marrucci, C. Manzo, and D. Paparo, “Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media,” Phys. Rev. Lett. 96, 163905 (2006).

[24] L. Marrucci, E. Karimi, S. Slussarenko, B. Piccirillo, E. Santamsato, E. Nagali, and F. Sciarrino, “Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications,” J. Opt. 13, 064001 (2011).

[25] M. Watanabe, S. Juodkazis, H.-B. Sun, S. Matsuo, and H. Misawa, “Luminescence and defect formation by visible and nearinfrared irradiation of vitreous silica,” Phys. Rev. B 60, 9959– 9964 (1999).

[26] R. Buividas, S. Rek tyt , M. Malinauskas, and S. Juodkazis, “Nano-groove and 3D fabrication by controlled avalanche using femtosecond laser pulses,” Opt. Mater. Express 3, 1674–1686 (2013).

[27] H.-B. Sun, S. Juodkazis, M. Watanabe, S. Matsuo, H. Misawa, and J. Nishii, “Generation and recombination of defects in vitreous silica induced by irradiation with near-infrared femtosecond laser,” J. Phys. Chem. 104, 3450–3455 (2000).

[28] O. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69, 042903 (2004).

[29] S. Juodkazis, S. Matsuo, H. Misawa, V. Mizeikis, A. Marcinkevicius, H. B. Sun, Y. Tokuda, M. Takahashi, T. Yoko, and J. Nishii, “Application of femtosecond laser pulses for microfabrication of transparent media,” Appl. Surf. Sci. 197– 198, 705–709 (2002).

[30] S. Juodkazis, K. Yamasaki, V. Mizeikis, S. Matsuo, and H. Misawa, “Formation of embedded patterns in glasses using femtosecond irradiation,” Appl. Phys. A 79, 1549–1553 (2004).

[31] E. Vanagas, I. Kudryashov, D. Tuzhilin, S. Juodkazis, S. Matsuo, and H. Misawa, “Surface nanostructuring of borosilicate glass by femtosecond nJ energy pulses,” Appl. Phys. Lett. 82, 2901–2903 (2003).

[32] E. Gratton, D. M. Jameson, and R. D. Hall, “Multifrequency phase and modulation fluorometry,” Annu. Rev. Biophys. Bioeng. 13, 105–124 (1984).

[33] S. Juodkazis, P. Eliseev, H.-B. Sun, M. Watanabe, H. Misawa, T. Sugahara, and S. Sakai, “Annealing of GaN-InGaN multi quantum wells: correlation between the bangap and yellow photoluminescence,” Jpn. J. Appl. Phys. 39, 393–396 (2000).

[34] P. Eliseev, H.-B. Sun, S. Juodkazis, T. Sugahara, S. Sakai, and H. Misawa, “Laser-induced damage threshold and surface processing of GaN at 400 nm wavelength,” Jpn. J. Appl. Phys. 38, L839– L841 (1999).

[35] T. Hashimoto, S. Juodkazis, and H. Misawa, “Void formation in glass,” New J. Phys. 9, 253 (2007).

[36] M. Beresna, M. Gecevi ius, M. Lancry, B. Poumellec, and P. G. Kazansky, “Broadband anisotropy of femtosecond laser induced nanogratings in fused silica,” Appl. Phys. Lett. 103, 131903 (2013).

[37] S. Juodkazis, V. Mizeikis, M. Sud ius, H. Misawa, K. Kitamura, S. Takekawa, E. G. Gamaly, W. Z. Krolikowski, and A. V. Rode, “Laser induced memory bits in photorefractive LiNbO3 and LiTaO3,” Appl. Phys. A 93, 129–133 (2008).

[38] S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, and B. Luther-Davies, “Laser-induced micro-explosion confined in a bulk of silica: formation of nano-void,” Appl. Phys. Lett. 88, 201909 (2006).

[39] L. Bressel, D. de Ligny, C. Sonneville, V. Martinez-Andrieux, V. Mizeikis, R. Buividas, and S. Juodkazis, “Femtosecond laser induced density changes in GeO2 and SiO2 glasses: fictive temperature effect,” Opt. Mater. Express 1, 605–613 (2011).

[40] S. Juodkazis, H. Misawa, E. G. Gamaly, B. Luther-Davis, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Is the nano-explosion really microscopic ” J. Non-Cryst. Solids 355, 1160–1162 (2009).

[41] S. Juodkazis, K. Nishimura, S. Tanaka, H. Misawa, E. E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laserinduced microexplosion confined in the bulk of a sapphire crystal: Evidence of multimegabar pressures,” Phys. Rev. Lett. 96, 166101 (2006).

[42] E. E. Gamaly, S. Juodkazis, K. Nishimura, H. Misawa, B. Luther- Davies, L. Hallo, P. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in a bulk of a transparent solid: confined microexplosion and void formation,” Phys. Rev. B 73, 214101 (2006).

Christiaan J. de Jong, Alireza Lajevardipour, Mindaugas Gecevi?ius, Martynas Beresna, Gediminas Gervinskas, Peter G. Kazansky, Yves Bellouard, Andrew H. A. Clayton, Saulius Juodkazis. Deep-UV fluorescence lifetime imaging microscopy[J]. Photonics Research, 2015, 3(5): 05000283.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!