中国激光, 2007, 34 (4): 564, 网络出版: 2007-04-25   

大功率激光作用下小孔形成数值模拟

Modelling of the Keyhole Formation under High Intensity Laser Power
作者单位
1 北京工业大学材料科学与工程学院, 北京 100022
2 北京航空制造工程研究所, 北京 100024
摘要
激光深熔焊以小孔效应为特征,小孔使得激光束流与被焊接材料之间的耦合效率大大提高。小孔内的逆轫致吸收使得激光能量逐步衰减。另一方面,小孔内等离子体向熔池传热,起到焊接内热源的作用。因此,利用建立组合体热源模型,选择旋转高斯热源和双椭球形体热源模拟激光能量的分布,结合SIMPLE算法,求解不可压缩流体的质量守恒、动量守恒和能量守恒方程,得到了大Péclet数下的小孔形态。模拟结果显示,控制容积法中的体热源传热方式不同于有限元法的表面热流密度分布方式。最后,将模拟结果和钛合金激光焊接的焊缝形状和尺寸进行了对比,说明所选择的体热源模型在激光深熔焊模拟中具有较好的适应性。
Abstract
Keyhole effect is one of the characteristics during deep penetration laser welding. Laser keyhole results in obvious improvement of the coupling efficiency of laser power in the metal sheet. The laser energy attenuation along the thickness of the sheet occurs due to the inverse bremsstrahlung absorption inside the keyhole. On the other hand, the keyhole plasma plays welding heat source role in transferring laser energy to melt pool. As a result, a combination of a rotary volumetric heat source with a double ellipsoid volumetric heat source was proposed, and the governing equations consisting of mass conservation, momentum conservation and energy conservation for the incompressible fluid flow and heat transfer are solved using SIMPLE algorithm based on control volume method. Influence of weld process parameters on the keyhole dimensions was simulated. In addition, validation experiments were carried out in order to compare weld shape and its size.
参考文献

[1] . R. Anthony, H. E. Cline. Surface rippleing induced by surface-tension gratients during laser surface melting and alloying[J]. J. Appl. Phys., 1977, 48(9): 3888-3894.

[2] . Mazumder, W. M. Steen. Heat transfer model for cw laser material processing[J]. J. Appl. Phys., 1980, 51(2): 941-947.

[3] . H. Amara, R. Fabbro, F. Hamadi. Modeling of the melted bath movement induced by the vapor flow in deep penetration laser welding[J]. Journal of Laser Applications, 2006, 18(1): 2-11.

[4] Qin Guoliang, Lin Shangyang. Radial dimension of keyhole and its dynamic characteristics in laser deep penetration welding [J]. Chinese J. Lasers, 2005, 32(4):557~561
秦国梁,林尚扬. 激光深熔焊接过程中小孔径向尺寸及其动特性[J]. 中国激光, 2005, 32(4):557~561

[5] Duan Aiqin, Hu Lunji, Wang Yajun. Research on weld penetration monitoring by laser plasma optical signal in laser welding [J]. Chinese J. Lasers, 2005, 32(1):131~134
段爱琴,胡伦骥,王亚军. 激光深熔焊焊缝的熔透性监测研究[J]. 中国激光, 2005, 32(1):131~134

[6] Ki H. Mohanty, P. S. Mazumder, J. Modeling of laser keyhole welding: part one. mathematical model, numerical methodology, role of recoil pressure, multiple reflections and free surface evolution [J]. Metallurgical Transactions, 2002, 33A(6):1817~1830

[7] . The influence of fluid flow phenomena on the laser beam welding process[J]. International Journal of Heat and Fluid Flow, 2002, 23: 288-297.

[8] . De, S. K. Maiti, C. A. Walsh et al.. Finite element simulation of laser spot welding[J]. Science and Technology of Welding and Joining, 2003, 8(5): 377-384.

[9] J. Goldak, A. Chakravarti, M. Bibby. A new finite model for welding heat source [J]. Metallurgical Transactions B, 1984, 15B(20:299~305

[10] . . A new heat source model in numerical simulation of high energy beam welding[J]. Transactions of the China Welding Institution, 2004, 25(1): 91-94.

[11] . . Numerical simulation of the temperature field and flow velocity distribution during full penetration laser welding[J]. Transactions of the China Welding Institution, 2005, 26(12): 65-69.

[12] Tao Wenquan. Numerical Heat Transfer [M]. Second edition. Beijing: Xi′an Jiaotong University Press, 2001. 5~6
陶文铨. 数值传热学[M]. 第2版. 西安:西安交通大学出版社, 2001. 5~6

王宏, 史耀武, 巩水利. 大功率激光作用下小孔形成数值模拟[J]. 中国激光, 2007, 34(4): 564. 王宏, 史耀武, 巩水利. Modelling of the Keyhole Formation under High Intensity Laser Power[J]. Chinese Journal of Lasers, 2007, 34(4): 564.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!