Matter and Radiation at Extremes, 2017, 2 (6): 278, Published Online: Jan. 17, 2018  

The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center

Author Affiliations
Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
Abstract
Wuhan National High Magnetic Field Center (WHMFC) at Huazhong University of Science and Technology is one of the top-class research centers in the world, which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014. This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC. In addition, it will describe the application development of pulsed magnetic fields in both scientific and industrial research.
References

[1] F. Herlach, High Magnetic Fields: Science and Technology, World Scientific, 2003.

[2] D.N. Nguyen, J. Michel, C.H. Mielke, Status and development of pulsed magnets at the NHMFL pulsed field facility, IEEE Trans. Appl. Supercond. 26 (4) (2016) 4300905.

[3] S. Zherlitsyn, B. Wustmann, T. Herrmannsd€orfer, J. Wosnitza, Magnettechnology development at the Dresden High Magnetic Field Laboratory, J. Low Temp. Phys. 170 (5) (2013) 447-451.

[4] M.D. Watson, T. Yamashita, S. Kasahara, W. Knafo, M. Nardone, et al., Dichotomy between the hole and electron behavior in multiband superconductor FeSe probed by ultrahigh magnetic fields, Phys. Rev. Lett. 115 (2) (2015) 027006.

[5] L. Li, T. Peng, H.F. Ding, X.T. Han, Z.C. Xia, et al., Progress in the development of the Wuhan high magnetic field center, J. Low Temp. Phys. 159 (1-2) (2010) 374-380.

[6] T. Peng, Q. Sun, J. Zhao, F. Jiang, L. Li, et al., Development of fast cooling pulsed magnets at the Wuhan National High Magnetic Field Center, Rev. Sci. Instrum. 84 (12) (2013) 125112.

[7] L. Li, Y.L. Lv, H.F. Ding, T.H. Ding, X.T. Han, et al., Short and long pulse high magnetic field facility at the Wuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond. 24 (3) (2014) 9500404.

[8] T. Peng, F. Jiang, Q.Q. Sun, Q. Xu, H.X. Xiao, et al., Design and test of a 90-T nondestructive magnet at the Wuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond. 24 (3) (2014) 4300604.

[9] T. Peng, F. Jiang, Q.Q. Sun, Y. Pan, F. Herlach, et al., Concept design of 100-T pulsed magnet at theWuhan National High Magnetic Field Center, IEEE Trans. Appl. Supercond. 26 (4) (2016) 4300504.

[10] H. Ding, J. Hu, W. Liu, Y. Xu, C. Jiang, et al., Design of a 135 MW power supply for a 50 T pulsed magnet, IEEE Trans. Appl. Supercond. 22 (3) (2012) 5400504.

[11] Y.L. Lv, T. Peng, G.B. Wang, T.H. Ding, X.T. Han, et al., Magnet design and analysis of a 40 Tesla long pulse system energized by a battery bank, J. Low Temp. Phys. 170 (5e6) (2013) 475-480.

[12] H. Xiao, Y. Ma, Y. Lv, T. Ding, S. Zhang, et al., Development of a highstability flat-top pulsed magnetic field facility, IEEE Trans. Power Electron. 29 (9) (2014) 4532-4537.

[13] F. Jiang, T. Peng, H. Xiao, J. Zhao, Y. Pan, et al., Design and test of a flattop magnetic field system driven by capacitor banks, Rev. Sci. Instrum. 85 (4) (2014) 045106.

[14] J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, et al., Landau level splitting in Cd3As2 under high magnetic fields, Nat. Commun. 6 (2015) 7779.

[15] Y. Liu, X. Yuan, C. Zhang, Z. Jin, A. Narayan, et al., Zeeman splitting and dynamical mass generation in Dirac semimetal ZrTe5, Nat. Commun. 7 (2016) 12516.

[16] Y. Zhao, H. Liu, C. Zhang, H. Wang, J. Wang, et al., Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2, Phys. Rev. X 5 (3) (2015) 031037.

[17] H.J. Kim, K.S. Kim, J.F. Wang, M. Sasaki, N. Satoh, et al., Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena, Phys. Rev. Lett. 111 (24) (2013) 246603.

[18] X. Xu, W.H. Jiao, N. Zhou, Y. Guo, Y.K. Li, et al., Quasi-linear magnetoresistance and the violation of Kohler's rule in the quasi-one-dimensional Ta4Pd3Te16 superconductor, J. Phys. Condens. Matter 27 (33) (2015) 335701.

[19] Z.W. Zhu, J.H. Wang, H.K. Zuo, B. Fauqu e, R.D. McDonald, et al., Emptying Dirac valleys in bismuth using high magnetic fields, Nat. Commun. (2017) 15297.

[20] C.L. Zhang, S.Y. Xu, C.M. Wang, Z. Lin, Z.Z. Du, et al., Magnetictunnelling- induced Weyl node annihilation in TaP, Nat. Phys. (2017), https://doi.org/10.1038/nphys4183.

[21] C. Shang, Z.C. Xia, M. Wei, Z. Jin, B.R. Chen, et al., Al3t doping effects and high-field phase diagram of La0.5Sr0.5Mn1 xAlxO3, J. Phys. D Appl. Phys. 49 (3) (2016) 035001.

[22] H.K. Zuo, L.R. Shi, Z.C. Xia, J.W. Huang, B.R. Chen, et al., The magnetic anisotropy and complete phase diagram of CuFeO2 measured in a pulsed high magnetic field up to 75T, Chin. Phys. Lett. 32 (4) (2015) 047502.

[23] M.Y. Ruan, Z.W. Ouyang, S.S. Sheng, X.M. Shi, Y.M. Guo, et al., Highfield magnetization study of spin-chain compounds Ca3Co2 xMnxO6, J. Magnetism Magnetic Mater. 361 (2014) 157-160.

[24] B.R. Chen, Z.C. Xia, J.W. Huang, Z. Jin, H.K. Zuo, et al., Engineering of ion-doping on the ground states and Bose-Einstein condensation of Sr3Cr2O8, Mater. Chem. Phys. 167 (2015) 278-285.

[25] C. Chen, Y.B. Han, X.J. Wang, P.P. Chen, J.B. Han, et al., Low temperature photo-induced carrier dynamics in the GaAs0.985N0.015 alloy, J. Alloys Compd. 699 (2017) 297-302.

[26] J. Zhang, X. Wang, Z. Zhong, Z. Ma, S. Wang, et al., Magnetic field induced extraordinary photoluminescence enhancement in Er3t :YVO4 single crystal, J. Appl. Phys. 118 (8) (2015) 083101.

[27] Y. Han, Z. Ma, J. Zhang, J. Wang, G. Du, et al., Hidden local symmetry of Eu3t in xenotime-like crystals revealed by high magnetic fields, J. Appl. Phys. 117 (5) (2015) 055902.

[28] G. Du, P. Liu, W. Guo, Y. Han, J. Zhang, et al., The influence of high magnetic field on electric-dipole emission spectra of Eu3t in different single crystals,, J. Mater. Chem. C 1 (45) (2013) 7608-7613.

[29] S.L. Wang, L. Li, Z.W. Ouyang, Z.C. Xia, N.M. Xia, et al., Development of high-magnetic-field, high-frequency electronic spin resonance system, Acta Phys. Sin. 61 (10) (2012) 107601.

[30] M.Y. Ruan, Z.W. Ouyang, Y.M. Guo, J.J. Cheng, Y.C. Sun, et al., Disappearance of Ising nature in Ca3ZnMnO6 studied by high-field ESR, J. Phys. Condens. Matter 26 (23) (2014) 236001.

[31] Y.F. Deng, T. Han, Z. Wang, Z. Ouyang, B. Yin, et al., Uniaxial magnetic anisotropy of square-planar chromium(II) complexes revealed by magnetic and HF-EPR studies, Chem. Commun. 51 (100) (2015) 17688-17691.

[32] V. Psyk, D. Risch, B.L. Kinsey, A.E. Tekkaya, M. Kleiner, Electromagnetic formingda review, J. Mater. Process. Technol. 211 (5) (2011) 787-829.

[33] L. Li, X. Han, T. Peng, H. Ding, T. Ding, et al., Space-time-controlled multi-stage pulsed magnetic field forming and manufacturing technology, in: The 5th International Conference on High Speed Forming. Dortmund, Germany, 2012, pp. 53-58.

[34] Z. Lai, X. Han, Q. Cao, L. Qiu, Z. Zhou, et al., The electromagnetic flanging of a large-scale sheet workpiece, IEEE Trans. Appl. Supercond. 24 (3) (2014) 0500805.

[35] Q. Xiong, Q. Cao, X. Han, Z. Lai, F. Deng, et al., Axially movable electromagnetic forming system for large-scale metallic sheet, IEEE Trans. Appl. Supercond. 26 (4) (2016) 3701404.

[36] Z. Lai, Q. Cao, B. Zhang, X. Han, Z. Zhou, et al., Radial Lorentz force augmented deep drawing for large drawing ratio using a novel dual-coil electromagnetic forming system, J. Mater. Process. Technol. 222 (2015) 13-20.

[37] X. Zhang, Q. Cao, X. Han, Q. Chen, Z. Lai, et al., Application of triplecoil system for improving deformation depth of tube in electromagnetic forming, IEEE Trans. Appl. Supercond. 26 (4) (2016) 3701204.

[38] M.F. Hsieh, Y.M. Lien, D.G. Dorrell, Post-assembly magnetization of rare-earth fractional-slot surface permanent-magnet machines using a two-shot method, IEEE Trans. Industry Appl. 47 (6) (2011) 2478-2486.

[39] Y. Lv, G. Wang, L. Li, Post-assembly magnetization of a 100 kW high speed permanent magnet rotor, Rev. Sci. Instrum. 86 (3) (2015) 034706.

[40] Q. Cao, X. Han, L. Li, Configurations and control of magnetic fields for manipulating magnetic particles in microfluidic applications: magnet systems and manipulation mechanisms, Lab Chip 14 (15) (2014) 2762-2777.

[41] B. Polyak, G. Friedman, Magnetic targeting for site-specific drug delivery: applications and clinical potential, Expert Opin. Drug Deliv. 6 (1) (2009) 53-70.

[42] C. Plank, O. Zelphati, O. Mykhaylyk, Magnetically enhanced nucleic acid delivery, Ten years of magnetofectiondprogress and prospects, Adv. Drug Deliv. Rev. 63 (14) (2011) 1300-1331.

[43] L. Liang, C. Zhang, X. Xuan, Enhanced separation of magnetic and diamagnetic particles in a dilute ferrofluid, Appl. Phys. Lett. 102 (23) (2013) 234101.

[44] Q. Cao, X. Han, L. Chun, J. Liu, L. Li, Note: magnetic targeting for enhancement of the activation efficiency of G protein-coupled receptor with a two-pair coil system, Rev. Sci. Instrum. 87 (1) (2016) 016103.

[45] X. Han, Y. Feng, Q. Cao, L. Li, Three-dimensional analysis and enhancement of continuous magnetic separation of particles in microfluidics, Microfluidics Nanofluidics 18 (5e6) (2015) 1209-1220.

[46] Q. Cao, X. Han, L. Li, An active microfluidic mixer utilizing a hybrid gradient magnetic field, Int. J. Appl. Electromagn. Mech. 47 (3) (2015) 583-592.

Xiaotao Han, Tao Peng, Hongfa Ding, Tonghai Ding, Zengwei Zhu, Zhengcai Xia, Junfeng Wang, Junbo Han, Zhongwen Ouyang, Zhenxing Wang, Yibo Han, Houxiu Xiao, Quanliang Cao, Yiliang Lv, Yuan Pan, Liang Li. The pulsed high magnetic field facility and scientific research at Wuhan National High Magnetic Field Center[J]. Matter and Radiation at Extremes, 2017, 2(6): 278.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!