光学学报, 2016, 36 (3): 0328001, 网络出版: 2016-03-03   

太赫兹超材料类EIT 谐振无标记生物传感 下载: 651次

Terahertz Label-Free Bio-Sensing with EIT-Like Metamaterials
作者单位
中国计量学院太赫兹技术与应用研究所, 浙江 杭州 310018
摘要
设计并制备了一种太赫兹波段的类电磁诱导透明(EIT)超材料谐振器,用于链霉亲和素-琼脂糖的特异性传感。利用有限差分法设计两个正方形开口谐振环嵌套构成的超材料谐振器实现类EIT 高Q 谐振,并对其传感特性进行了仿真分析。将生物素和十八硫醇固化在制备的超材料表面形成特异性膜对不同浓度链霉亲和素-琼脂糖进行传感实验,利用基于返波振荡器(BWO)的高分辨太赫兹谱进行了谐振特性测量。结果表明设计的类EIT 超材料传感器Q 值为34,灵敏度为24.7 GHz/RIU,链霉亲和素-琼脂糖单位质量浓度变化引起的频移量为0.65 GHz,为太赫兹器件应用于生物化学领域的无标记微量检测提供一定的参考。
Abstract
A kind of terahertz metamaterial with electromagnetically induced transparency (EIT) like resonance and its application in streptavidin-agarose (SA) specific sensing are demonstrated. Finite element method is used to analyze the high Q EIT-like resonance and its sensing performance. The label-free specific biosensor is composed of metamaterials functionalized by biotins and octadecanthiols for SA biorecognition experiments. The transmission properties are measured by a high-resolution backward-wave oscillator (BWO) spectral system. The results show that the EIT-like resonance of the metamaterial sensor has a high Q factor of 34 and a sensitivity of 24.7 GHz/RIU. Sensitivity of the resonance frequency shift to SA concentration is 0.65 GHz/(mg/mL). The results provide references for applying terahertz devices to label-free biological and chemical sensing.
参考文献

[1] Mickan P S, Menikh A, Liu H, et al.. Label-free bioaffinity detection using terahertz technology[J]. Phys Med Biol, 2002, 47(21): 3789- 3795.

[2] Menikh A, Mickan P S, Liu H, et al.. Label-free amplified bioaffinity detection using terahertz wave technology[J]. Biosens Bioelectron, 2004, 20(3): 658-662.

[3] Ogawa Y, Hayashi S, Oikawa M, et al.. Interference terahertz label-free imaging for protein detection on a membrane[J]. Opt Express, 2008, 16(26): 22083-22089.

[4] Yoshida H, Ogawa Y, Kawai Y, et al.. Terahertz sensing method for protein detection using a thin metallic mesh[J]. Appl Phys Lett, 2007, 91(25): 253901.

[5] Dragoman M, Cismaru A, Radoi A, et al.. DNA hybridization detection in a miniaturized electromagnetic band gap resonator[J]. Appl Phys Lett, 2011, 99(25): 253106.

[6] Lee H J, Yook J G. Biosensing using split-ring resonators at microwave regime[J]. Appl Phys Lett, 2008, 92(25): 254103.

[7] Debus C, Bolivar H P. Frequency selective surfaces for high sensitivity terahertz sensing[J]. Appl Phys Lett, 2007, 91(18): 184102.

[8] Wu X J, Quan B G, Pan X C, et al.. Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor [J]. Biosens Bioelectron, 2013, 42: 626-631.

[9] Cubukcu E, Zhang S, Park Y S, et al.. Split ring resonator sensors for infrared detection of single molecular monolayers[J]. Appl Phys Lett, 2009, 95(4): 043113.

[10] Hara F J, Singh R, Brener I, et al.. Thin-film sensing with planar terahertz metamaterials: Sensitivity and limitations[J]. Opt Express, 2008, 16(3): 1786-1795.

[11] Cao W, Singh R, AI-Naib I A, et al.. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials[J]. Opt Lett, 2012, 37(16): 3366- 3368.

[12] Papasimakis N, Fedotov A V, Zheludev I N. Metamaterial analog of electromagnetically induced transparency[J]. Phys Rev Lett, 2008, 101(25): 253903.

[13] Michael F, Atac I, Jonathan M P. Electromagnetically induced transparency: Optics in coherent media[J]. Rev Mod Phys, 2005, 77(2): 633-673.

[14] Liu N, Langguth L, Weiss T, et al.. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit[J]. Nat Mater, 2009, 8(9): 758-762.

[15] Gu J Q, Singh R, Liu X J, et al.. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nat Commun, 2012, 3(4): 1151.

[16] 韩昊, 吴东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 0423003.

    Han Hao, Wu Dongwei, Liu Jianjun, et al.. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 0423003.

[17] Chiam Y S, Singh R, Rockstuhl C, et al.. Analogue of electromagnetically induced transparency in a terahertz metamaterial[J]. Phys Rev B, 2009, 80(15): 153103.

[18] Chen C Y, Un I W, Tai N H, et al.. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance[J]. Opt Express, 2009, 17(17): 15372-15380.

[19] Azad A K, Dai J M, Zhang W L. Transmission properties of terahertz pulses through subwavelength double split-ring resonators[J]. Opt Lett, 2006, 31(5): 634-636.

[20] 李化月, 刘建军, 韩张华, 等. 基于类电磁诱导透明效应的太赫兹折射率传感器[J]. 光学学报, 2014, 34(2): 0223003.

    Li Huayue, Liu Jianjun, Han Zhanghua, et al.. Terahertz metamaterial analog of electromagnetically induced transparency for a refractiveindex- based sensor[J]. Acta Optica Sinica, 2014, 34(2): 0223003.

[21] Xu X L, Peng B, Li D H, et al.. Flexible visible-infrared metamaterials and their applications in highly sensitive chemical and biological sensing[J]. Nano Lett, 2011, 11(8): 3232-3238.

[22] Schreiber F. Structure and growth of self-assembling monolayers[J]. Prog Surf Sci, 2000, 65(5): 151-256.

孙雅茹, 史同璐, 刘建军, 洪治. 太赫兹超材料类EIT 谐振无标记生物传感[J]. 光学学报, 2016, 36(3): 0328001. Sun Yaru, Shi Tonglu, Liu Jianjun, Hong Zhi. Terahertz Label-Free Bio-Sensing with EIT-Like Metamaterials[J]. Acta Optica Sinica, 2016, 36(3): 0328001.

本文已被 14 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!