量子电子学报, 2012, 29 (5): 577, 网络出版: 2012-10-08   

通过六比特最大纠缠态来分裂量子信息

Splitting quantum information via six-qubit maximally entangled state
作者单位
1 新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054
2 昌吉学院物理系,新疆 昌吉 831100
摘要
量子信息分裂或量子态共享是经典秘密共享方案在量子方案中的概括。在量子信息分裂中,一种量子态的形式被划分并分发给多个接收者。提出一个通过使用六粒子 的最大纠缠态作为量子通道来分裂两量子比特混态的方案。首先Alice执行两个Bell基测量并且宣布测量结果,同时分配Charlie(Bob)来重建未知的初态。如果控制者 Bob(Charlie)同意帮助Charlie(Bob)获得初态,他们就在各自的量子比特上执行单粒子测量。在发送者对粒子执行Bell基测量以及合作者对粒子执行单粒子测量之后, 通过运用适当的幺正算符,接收者可以重建发送者信息的初始状态。
Abstract
Quantum information splitting (QIS) or quantum state sharing is the generalization of classical secret sharing schemes to the quantum scenario. In QIS, a piece of quantum information (in the form of a quantum state) is divided and distributed to a number of receivers. A scheme of splitting two-qubit states was proposed by using six-particle maximally entangled state as the quantum channel. Alice first performs two Bell-basis measurement and announces her measurement outcome and assigns Charlie (Bob) to reconstruct the original unknown state. If the controllers Bob (Charlie) agree to help Charlie (Bob) obtain the original state, they should perform single-particle measurements on their respective qubits. After the sender performs Bell-basis measurements on her particles, and the cooperators operate single-particle measurements on their particles, the state receiver can reconstruct the original state of the sender by applying the appropriate unitary operation.
参考文献

[1] Bennett C H, Brassard G, Crepeau C, et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett., 1993, 70(13): 1895-1899.

[2] Zha Xinwei, Ren Kuanfang. General relation between the transformation operator and an invariant under stochastic local operations and classical communication in quantum teleportation [J]. Phys. Rev. A, 2008, 77: 014306-014309.

[3] Zha Xinwei, Song Haiyang, Ren Kuanfang. The relation between local unitary transformation invariant and perfect quantum teleportation [J]. IJQI, 2010, 8(8): 1251-1256.

[4] Bennett C H, et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states [J]. Phys. Rev. Lett., 1992, 69: 2881-2884.

[5] Hillery M, Buzek V, Berthiaume A. Quantum secret sharing [J]. Phys. Rev. A, 1999, 59: 1829-1834.

[6] Zhang Dengyu, Tang Shiqing, Wang Xinwen, et al. A simple scheme for realizing four-photon GHZ state based on cavity quantum electrodynamics [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2012, 29(2): 193-195 (in Chinese).

[7] Tang Shiqing, Zhang Dengyu, Gao Feng, et al. Scheme for implementing a three-qubit Toffoli gate resonant interaction in bimode cavity QED system [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2009, 2(5): 548-554 (in Chinese).

[8] Zhan Xiaogui, Zhang Dengyu, Gao Feng, et al. Controlled teleportation of an arbitrary two-qubit superposition state [J]. Chinese Journal of Quantum Electronics (量子电子学报), 2009, 2(1): 44-49 (in Chinese).

[9] Scherpelz P, Resch R, Berryrieser D, et al. Entanglement-secured single-qubit quantum secret sharing [J]. Phys. Rev. A, 2011, 84: 032303.

[10] Gottesman D. Theory of quantum secret sharing [J]. Phys. Rev. A, 2000, 61: 042311.

[11] Cleve R, Gottesman D, Lo H K. How to share a quantum secret [J]. Phys. Rev. Lett., 1999, 83: 648.

[12] Lance A M, et al. Tripartite quantum state sharing [J]. Phys. Rev. Lett., 2004, 92: 177903.

[13] Zhang Zhanjun, Li Yong, Man Zhongxiao, et al. Multiparty quantum secret sharing [J]. Phys. Rev. A, 2005, 71: 044301.

[14] Singh S K, Srikanth R. Generalized quantum secret sharing [J]. Phys. Rev. A, 2005, 71: 012328.

[15] Deng Fuguo, Li Xihan, Li Chunyan, et al. Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs [J]. Phys. Rev. A, 2005, 72: 044301.

[16] Gordon G, Rigolin G. Generalized quantum-state sharing [J]. Phys. Rev. A, 2006, 73: 062316.

[17] Zheng Shibiao. Splitting quantum information via W states [J]. Phys. Rev. A, 2006, 74: 054303.

[18] Muralidharan S, Panigrahi P K. Quantum-information splitting using multipartite cluster states [J]. Phys. Rev. A, 2008, 78: 032321.

[19] Zhan Youbang, Zhang Qunyong, Wang Yuwu. Schemes for splitting quantum information with four-particle genuine entangled states [J]. Commun. Theor. Phys., 2010, 53: 847.

[20] Wang Xinwen, Xia Lixin, Wang Zhiyong, et al. Hierarchical quantum-information splitting [J]. Opt. Commun., 2010, 283: 1196.

[21] Borras A, Plastino A R, et al. Multiqubit systems: highly entangled states and entanglement distribution [J]. Phys. A: Math. Theor., 2007, 40.

[22] Zha Xinwei, Song Haiyang. Two schemes of remote preparation of a four-particle entangled W state via a six-qubit maximally entangled state [J]. Phys. Scr., 2011, 84: 015010.

[23] Zha Xinwei, Song Haiyang. Remote preparation of a two-particle state using a four-qubit cluster state [J]. Opt. Commun., 2011, 284: 1472-1474.

[24] Zha Xinwei, Song Haiyang. Optimal schemes of teleportation one-particle state by a three-particle general W state [J]. Commun. Theor. Phys., 2010, 53(5): 852-854.

[25] Zha Xinwei, Song Haiyang. Teleportation and controlled teleportation with maximally four-qubit entanglement quantum states [J]. Mod. Phys. Lett. B, 2010, 24(19): 2069-2076.

涂修丽, 张婷, 王先明, 徐晶. 通过六比特最大纠缠态来分裂量子信息[J]. 量子电子学报, 2012, 29(5): 577. TU Xiu-li, ZHANG Ting, WANG Xian-ming, XU Jing. Splitting quantum information via six-qubit maximally entangled state[J]. Chinese Journal of Quantum Electronics, 2012, 29(5): 577.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!