光电工程, 2020, 47 (4): 180654, 网络出版: 2020-05-27   

压电倾斜镜迟滞非线性建模及逆补偿控制

Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror
刘鑫 1,2,3李新阳 1,2,*杜睿 1,2
作者单位
1 中国科学院自适应光学重点实验室,四川 成都 610209
2 中国科学院光电技术研究所,四川 成都 610209
3 中国科学院大学,北京 100049
摘要
自适应光学系统中的压电倾斜镜通常是用来实时校正大气湍流引起的波前畸变,但压电倾斜镜的响应都有较大的非线性迟滞效应,大大降低了倾斜镜的到位精度,并且影响系统稳定性,制约了倾斜校正系统的带宽,因此需要对迟滞现象进行建模,通过建立的模型进行补偿。本文通过引入迟滞算子,使用贝叶斯正则化训练算法训练BP神经网络来构建压电倾斜镜迟滞模型,以中国科学院光电技术研究所自主研制的压电倾斜镜为对象开展了实验研究。最后的实验结果表明,通过BP神经网络构建的压电倾斜镜迟滞模型具有较准确的辨识能力,其中,X方向的迟滞大小由6.5%降低到了1.3%,Y方向的迟滞大小由7.1%降低到了1.6%。
Abstract
In the adaptive optics system, the piezoelectric steering mirror(tip/tilt mirror, TTM) is usually used to correct the wavefront aberration caused by atmospheric turbulence in real time. However, the response of the piezoelectric tilting mirror has large nonlinear hysteresis effect, which greatly reduces the precision of the tilting mirror in place, affects the stability of the system, and restricts the bandwidth of the skew correction system. Therefore, the hysteresis phenomenon needs to be modeled and compensated by the established model. In this paper, hysteresis operator is introduced and using Bayesian regularization training algorithm to train BP (back propagation) neural network to construct hysteresis model of piezoelectric steering mirror. Then experimental study was conducted on a piezoelectric steering mirror developed by Institute of Optics and Electronics, Chinese Academy of Sciences. The final experimental results show that the hysteresis model of piezoelectric steering mirror constructed by BP neural network has more accurate identification capability, the hysteresis size in the X direction decreased from 6.5% to 1.3% and that in the Y direction decreased from 7.1% to 1.6%.
参考文献

[1] Tyson R K. Introduction to Adaptive Optics[M]. Bellingham, Washington: SPIE Press, 2000.

[2] 王玉坤, 胡立发, 王冲冲, 等. 液晶自适应光学系统中倾斜镜的建模与控制[J]. 光学 精密工程, 2016, 24(4): 771–779.

    Wang Y K, Hu L F, Wang C C, et al. Modeling and control of Tip/Tilt Mirror in liquid crystal adaptive optical system[J]. Optics and Precision Engineering, 2016, 24(4): 771–779.

[3] 王冲冲, 胡立发, 何斌, 等. 基于神经网络的压电倾斜镜磁滞补偿方法研究[J]. 中国激光, 2013, 40(11): 1113001.

    Wang C C, Hu L F, He B, et al. Hysteresis compensation method of piezoelectric steering mirror based on neural network[J]. Chinese Journal of Lasers, 2013, 40(11): 1113001.

[4] Perez Arancibia N O, Chen N, Gibson J S, et al. Variable-order adaptive control of a microelectromechanical steering mirror for suppression of laser beam jitter[J]. Optical Engineering, 2006, 45(10): 104206.

[5] 谭逢富, 陈修涛, 姚佰栋, 等. 激光大气传输倾斜校正系统[J]. 红外与激光工程, 2011, 40(3): 429–432.

    Tan F F, Chen X T, Yao B D, et al. Tilt correction system for laser atmospheric propagation[J]. Infrared and Laser Engineering, 2011, 40(3): 429–432.

[6] 王红红, 陈方斌, 寿少峻, 等. 基于FSM的高精度光电复合轴跟踪系统研究[J]. 应用光学, 2010, 31(6): 909–913.

    Wang H H, Chen F B, Shou S J, et al. High precision electro-optical tracking system based on fast steering mirror[J]. Journal of Applied Optics, 2010, 31(6): 909–913.

[7] Kluk D J, Boulet M T, Trumper D L. A high-bandwidth, high-precision, two-axis steering mirror with moving iron actuator[J]. Mechatronics, 2012, 22(3): 257–270.

[8] 徐飞飞, 纪明, 赵创社. 快速偏转反射镜研究现状及关键技术[J]. 应用光学, 2010, 31(5): 847–850.

    Xu F F, Ji M, Zhao C S. Status of fast steering mirror[J]. Journal of Applied Optics, 2010, 31(5): 847–850.

[9] Mayergoyz I D. Mathematical Models of Hysteresis[M]. New York: Springer-Verlag, 1991.

[10] Hu H, Mrad R B. On the classical Preisach model for hysteresis in piezoceramic actuators[J]. Mechatronics, 2003, 13(2): 85–94.

[11] Banks H T, Kurdila A J. Hysteretic control influence operators representing smart material actuators: identification and approximation[C]//Proceedings of the 35th IEEE Conference on Decision and Control, Kobe, Japan, 1996: 3711–3716.

[12] Su C Y, Wang Q Q, Chen X K, et al. Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis[J]. IEEE Transactions on Automatic Control, 2005, 50(12): 2069–2074.

[13] 赵新龙. 基于迟滞算子的迟滞非线性系统建模与控制研究[D]. 上海: 上海交通大学, 2006.

    Zhao X L. Modeling and control for hysteresis systems based on hysteretic operator[D]. Shanghai: Shanghai Jiao Tong University, 2006.

[14] 马连伟. 三明治迟滞非线性系统的建模与控制研究[D]. 上海: 上海交通大学, 2007.

    Ma L W. Modeling and control for sandwich hysteresis systems[D]. Shanghai: Shanghai Jiao Tong University, 2007.

[15] Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: a modified Prandtl-Ishlinskii approach[J]. European Journal of Control, 2003, 9(4): 407–418.

刘鑫, 李新阳, 杜睿. 压电倾斜镜迟滞非线性建模及逆补偿控制[J]. 光电工程, 2020, 47(4): 180654. Liu Xin, Li Xinyang, Du Rui. Modeling and inverse compensation control of hysteresis nonlinear characteristics of piezoelectric steering mirror[J]. Opto-Electronic Engineering, 2020, 47(4): 180654.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!