光学学报, 2019, 39 (4): 0406002, 网络出版: 2019-05-10   

基于傅里叶变换的光纤陀螺测试环境自评估技术 下载: 754次

Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform
作者单位
北京航天时代光电科技有限公司, 北京 100854
引用该论文

刘元元, 杨永斌, 冯文帅, 于海成. 基于傅里叶变换的光纤陀螺测试环境自评估技术[J]. 光学学报, 2019, 39(4): 0406002.

Yuanyuan Liu, Yongbin Yang, Wenshuai Feng, Haicheng Yu. Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform[J]. Acta Optica Sinica, 2019, 39(4): 0406002.

参考文献

[1] 吴衍记. 高精度光纤陀螺发展现状及对策[J]. 导航定位与授时, 2015, 2(4): 53-57.

    吴衍记. 高精度光纤陀螺发展现状及对策[J]. 导航定位与授时, 2015, 2(4): 53-57.

    Wu Y J. The current situation and countermeasures of high precision fiber optic gyro[J]. Navigation Positioning and Timing, 2015, 2(4): 53-57.

    Wu Y J. The current situation and countermeasures of high precision fiber optic gyro[J]. Navigation Positioning and Timing, 2015, 2(4): 53-57.

[2] 薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-10.

    薛连莉, 陈少春, 陈效真. 2017年国外惯性技术发展与回顾[J]. 导航与控制, 2018, 17(2): 1-10.

    Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-10.

    Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2017[J]. Navigation and Control, 2018, 17(2): 1-10.

[3] 薛连莉, 陈少春, 陈效真. 2016年国外惯性技术发展与回顾[J]. 导航与控制, 2017, 16(3): 105-112, 84.

    薛连莉, 陈少春, 陈效真. 2016年国外惯性技术发展与回顾[J]. 导航与控制, 2017, 16(3): 105-112, 84.

    Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2016[J]. Navigation and Control, 2017, 16(3): 105-112, 84.

    Xue L L, Chen S C, Chen X Z. Development and review of foreign inertial technology in 2016[J]. Navigation and Control, 2017, 16(3): 105-112, 84.

[4] 徐海刚, 裴玉锋, 刘冲, 等. 光纤陀螺惯导在航海领域的发展与应用[J]. 导航定位与授时, 2018, 5(2): 7-11.

    徐海刚, 裴玉锋, 刘冲, 等. 光纤陀螺惯导在航海领域的发展与应用[J]. 导航定位与授时, 2018, 5(2): 7-11.

    Xu H G, Pei Y F, Liu C, et al. The development and application of fibre optic gyroscope INS in navigation domain[J]. Navigation Positioning and Timing, 2018, 5(2): 7-11.

    Xu H G, Pei Y F, Liu C, et al. The development and application of fibre optic gyroscope INS in navigation domain[J]. Navigation Positioning and Timing, 2018, 5(2): 7-11.

[5] 王惜康, 高玉平, 王平利, 等. 光纤陀螺仪工作环境的测量与评估[J]. 时间频率学报, 2016, 39(1): 54-60.

    王惜康, 高玉平, 王平利, 等. 光纤陀螺仪工作环境的测量与评估[J]. 时间频率学报, 2016, 39(1): 54-60.

    Wang X K, Gao Y P, Wang P L, et al. Measurement and assessment of working environment for fiber optic gyroscope[J]. Journal of Time and Frequency, 2016, 39(1): 54-60.

    Wang X K, Gao Y P, Wang P L, et al. Measurement and assessment of working environment for fiber optic gyroscope[J]. Journal of Time and Frequency, 2016, 39(1): 54-60.

[6] Narasimhappa M, Sabat S L, Nayak J. Fiber-optic gyroscope signal denoising using an adaptive robust kalman filter[J]. IEEE Sensors Journal, 2016, 16(10): 3711-3718.

    Narasimhappa M, Sabat S L, Nayak J. Fiber-optic gyroscope signal denoising using an adaptive robust kalman filter[J]. IEEE Sensors Journal, 2016, 16(10): 3711-3718.

[7] Yang G L, Liu Y Y, Li M, et al. AMA- and RWE- based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15(10): 26940-26960.

    Yang G L, Liu Y Y, Li M, et al. AMA- and RWE- based adaptive Kalman filter for denoising fiber optic gyroscope drift signal[J]. Sensors, 2015, 15(10): 26940-26960.

[8] Li Y H, Yang G L, Liu Y Y. Application of EMD filtering based on l2-norm in denoising FOG signal[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 244-248.

    Li Y H, Yang G L, Liu Y Y. Application of EMD filtering based on l2-norm in denoising FOG signal[J]. Journal of Chinese Inertial Technology, 2017, 25(2): 244-248.

[9] 陶冶, 李海军, 徐海刚. 稳定环境下的高精度光纤捷联惯导精度探索研究[J]. 导航定位与授时, 2018, 5(3): 30-34.

    陶冶, 李海军, 徐海刚. 稳定环境下的高精度光纤捷联惯导精度探索研究[J]. 导航定位与授时, 2018, 5(3): 30-34.

    Tao Y, Li H J, Xu H G. Research on precision of high accuracy FOG-SINS under steady conditions[J]. Navigation Positioning and Timing, 2018, 5(3): 30-34.

    Tao Y, Li H J, Xu H G. Research on precision of high accuracy FOG-SINS under steady conditions[J]. Navigation Positioning and Timing, 2018, 5(3): 30-34.

[10] Sanders G A, Sanders S J, Strandjord L K, et al. Fiber optic gyro development at Honeywell[J]. Proceedings of SPIE, 2016, 9852: 985207.

    Sanders G A, Sanders S J, Strandjord L K, et al. Fiber optic gyro development at Honeywell[J]. Proceedings of SPIE, 2016, 9852: 985207.

[11] Shupe D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655.

    Shupe D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655.

[12] Liu YY, Yang GL, Yin HL. Temperature drift modeling and compensation of FOG combined extended forgetting factor recursive least square (EFRLS)[C]. Chinese Control Conference, 2015: 5035- 5040.

    Liu YY, Yang GL, Yin HL. Temperature drift modeling and compensation of FOG combined extended forgetting factor recursive least square (EFRLS)[C]. Chinese Control Conference, 2015: 5035- 5040.

[13] 郜中星. 光纤陀螺环境误差机理与抑制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 3- 16.

    郜中星. 光纤陀螺环境误差机理与抑制方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2017: 3- 16.

    Gao ZX. Research on environmental error of fiber-optic gyroscope and suppressing method[D]. Harbin: Harbin Engineering University, 2017: 3- 16.

    Gao ZX. Research on environmental error of fiber-optic gyroscope and suppressing method[D]. Harbin: Harbin Engineering University, 2017: 3- 16.

[14] 俞梁英, 王子欧. 光纤陀螺微振动信号检测的建模与分析[J]. 激光杂志, 2016, 37(10): 57-61.

    俞梁英, 王子欧. 光纤陀螺微振动信号检测的建模与分析[J]. 激光杂志, 2016, 37(10): 57-61.

    Yu L Y, Wang Z O. Modeling and analysis of micro vibration signal detection of fiber optic gyroscope[J]. Laser Journal, 2016, 37(10): 57-61.

    Yu L Y, Wang Z O. Modeling and analysis of micro vibration signal detection of fiber optic gyroscope[J]. Laser Journal, 2016, 37(10): 57-61.

[15] 舒建涛, 李绪友, 吴磊, 等. 高精度光纤陀螺振动误差抑制技术[J]. 红外与激光工程, 2011, 40(11): 2201-2206.

    舒建涛, 李绪友, 吴磊, 等. 高精度光纤陀螺振动误差抑制技术[J]. 红外与激光工程, 2011, 40(11): 2201-2206.

    Shu J T, Li X Y, Wu L, et al. Vibration error restrain technology for high-precision fiber optic gyroscope[J]. Infrared and Laser Engineering, 2011, 40(11): 2201-2206.

    Shu J T, Li X Y, Wu L, et al. Vibration error restrain technology for high-precision fiber optic gyroscope[J]. Infrared and Laser Engineering, 2011, 40(11): 2201-2206.

[16] 谌尧周, 王夏霄, 高洋洋, 等. 地磁场对高精度光纤陀螺仪零偏的影响机理研究[J]. 电子测量技术, 2016, 39(1): 147-150.

    谌尧周, 王夏霄, 高洋洋, 等. 地磁场对高精度光纤陀螺仪零偏的影响机理研究[J]. 电子测量技术, 2016, 39(1): 147-150.

    Chen Y Z, Wang X X, Gao Y Y, et al. Research on the influence mechanism of earth's magnetic field on zero bias of high precision FOG[J]. Electronic Measurement Technology, 2016, 39(1): 147-150.

    Chen Y Z, Wang X X, Gao Y Y, et al. Research on the influence mechanism of earth's magnetic field on zero bias of high precision FOG[J]. Electronic Measurement Technology, 2016, 39(1): 147-150.

[17] 曾海东, 韩峰, 刘瑶琳. 傅里叶分析的发展与现状[J]. 现代电子技术, 2014, 37(3): 144-147.

    曾海东, 韩峰, 刘瑶琳. 傅里叶分析的发展与现状[J]. 现代电子技术, 2014, 37(3): 144-147.

    Zeng H D, Han F, Liu Y L. Development and current situation of Fourier analysis[J]. Modern Electronics Technique, 2014, 37(3): 144-147.

    Zeng H D, Han F, Liu Y L. Development and current situation of Fourier analysis[J]. Modern Electronics Technique, 2014, 37(3): 144-147.

刘元元, 杨永斌, 冯文帅, 于海成. 基于傅里叶变换的光纤陀螺测试环境自评估技术[J]. 光学学报, 2019, 39(4): 0406002. Yuanyuan Liu, Yongbin Yang, Wenshuai Feng, Haicheng Yu. Self-Assessment Technique for Fiber Optic Gyroscope Test Environment Based on Fourier Transform[J]. Acta Optica Sinica, 2019, 39(4): 0406002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!