中国激光, 2021, 48 (2): 0202012, 网络出版: 2021-01-06   

非晶合金激光制造技术研究进展 下载: 1827次特邀综述

Development of Laser Fabrication Technology for Amorphous Alloys
作者单位
1 安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
2 中国科学技术大学工程科学学院, 安徽 合肥 230027
3 安徽省工程机械智能制造重点实验室, 安徽 合肥 230601
引用该论文

姚燕生, 唐建平, 张亚超, 胡衍雷, 吴东. 非晶合金激光制造技术研究进展[J]. 中国激光, 2021, 48(2): 0202012.

Yansheng Yao, Jianping Tang, Yachao Zhang, Yanlei Hu, Dong Wu. Development of Laser Fabrication Technology for Amorphous Alloys[J]. Chinese Journal of Lasers, 2021, 48(2): 0202012.

参考文献

[1] 汪卫华. 非晶态物质的本质和特性[J]. 物理学进展, 2013, 33(5): 177-351.

    Wang W H. The nature and properties of amorphous matter[J]. Progress in Physics, 2013, 33(5): 177-351.

[2] Klement W, Willens R H, Duwez P. Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187(4740): 869-870.

[3] Chen H S. The glass transition temperature in glassy alloys: effects of atomic sizes and the heats of mixing[J]. Acta Metallurgica, 1974, 22(7): 897-900.

[4] TakeuchiA, Inoue A. Quantitative evaluation of critical cooling rate for metallic glasses[J]. Materials Science and EngineeringA, 2001, 304/305/306: 446- 451.

[5] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279-306.

[6] Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys[J]. Acta Materialia, 2011, 59(6): 2243-2267.

[7] 丁华平, 龚攀, 姚可夫, 等. 非晶合金零件成形技术研究进展[J]. 材料导报, 2020, 34(3): 139-147.

    Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: a technological review[J]. Materials Reports, 2020, 34(3): 139-147.

[8] Zhang L, Huang H. Micro machining of bulk metallic glasses: a review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100(1/2/3/4): 637-661.

[9] 卢晓阳, 杜宇雷, 廖文和. 3D打印块体非晶合金研究进展[J]. 热加工工艺, 2018, 47(4): 26-29.

    Lu X Y, Du Y L, Liao W H. Research progress of 3D printed bulk metallic glasses[J]. Hot Working Technology, 2018, 47(4): 26-29.

[10] 姜志鹏, 陈小明, 赵坚, 等. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(S1): 191-194.

    Jiang Z P, Chen X M, Zhao J, et al. Research progress and prospect of laser cladding technology for preparation of amorphous coatings[J]. Materials Reports, 2019, 33(S1): 191-194.

[11] 陈会子, 邓杨波, 黄健康, 等. 非晶合金焊接技术研究现状[J]. 热加工工艺, 2019, 48(21): 5-9.

    Chen H Z, Deng Y B, Huang J K, et al. Research status of amorphous alloy welding technology[J]. Hot Working Technology, 2019, 48(21): 5-9.

[12] Lu Y Z, Huang Y J, Wu J, et al. Graded structure of laser direct manufacturing bulk metallic glass[J]. Intermetallics, 2018, 103: 67-71.

[13] Lu Y Z, Huang Y J, Wu J. Laser additive manufacturing of structural-graded bulk metallic glass[J]. Journal of Alloys and Compounds, 2018, 766: 506-510.

[14] Pauly S, Löber L, Petters R, et al. Processing metallic glasses by selective laser melting[J]. Materials Today, 2013, 16(1/2): 37-41.

[15] Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 2015, 86: 703-708.

[16] Li X P, Kang C W, Huang H, et al. Selective laser melting of an Al86Ni6Y4.5Co2La1.5 metallic glass: processing, microstructure evolution and mechanical properties[J]. Materials Science and Engineering A, 2014, 606: 370-379.

[17] Li X P, Roberts M P. O'Keeffe S, et al. Selective laser melting of Zr-based bulk metallic glasses: processing, microstructure and mechanical properties[J]. Materials & Design, 2016, 112: 217-226.

[18] Pauly S, Schricker C, Scudino S, et al. Processing a glass-forming Zr-based alloy by selective laser melting[J]. Materials & Design, 2017, 135: 133-141.

[19] Ouyang D, Li N, Xing W, et al. 3D printing of crack-free high strength Zr-based bulk metallic glass composite by selective laser melting[J]. Intermetallics, 2017, 90: 128-134.

[20] Guo S, Wang M, Zhao Z, et al. Molecular dynamics simulation on the micro-structural evolution in heat-affected zone during the preparation of bulk metallic glasses with selective laser melting[J]. Journal of Alloys and Compounds, 2017, 697: 443-449.

[21] Guo S, Wang M, Lin X, et al. Research on the crystallization behavior occurred in the process of preparing bulk metallic glass with selective laser melting[J]. Materials Research Express, 2019, 6(6): 066582.

[22] 姚建华, 刘克元, 叶正挺, 等. Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2合金激光重熔非晶化行为[J]. 中国激光, 2018, 45(8): 0802006.

    Yao J H, Liu K Y, Ye Z T, et al. Amorphization behavior of laser remelted Ti47Cu38Zr7.5Fe2.5Sn2Si1Ag2 alloys[J]. Chinese Journal of Lasers, 2018, 45(8): 0802006.

[23] Li Y C, Zhang C, Xing W, et al. Design of Fe-based bulk metallic glasses with improved wear resistance[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 43144-43155.

[24] Deng L, Wang S H, Wang P, et al. Selective laser melting of a Ti-based bulk metallic glass[J]. Materials Letters, 2018, 212: 346-349.

[25] Zhang C, Li X M, Liu S Q, et al. 3D printing of Zr-based bulk metallic glasses and components for potential biomedical applications[J]. Journal of Alloys and Compounds, 2019, 790: 963-973.

[26] Sun H, Flores K M. Microstructural analysis of a laser-processed Zr-based bulk metallic glass[J]. Metallurgical and Materials Transactions A, 2010, 41(7): 1752-1757.

[27] Jung H Y, Choi S J, Prashanth K G, et al. Fabrication of Fe-based bulk metallic glass by selective laser melting: a parameter study[J]. Materials & Design, 2015, 86: 703-708.

[28] Liu K X, Liu W D, Wang J T, et al. Atomic-scale bonding of bulk metallic glass to crystalline aluminum[J]. Applied Physics Letters, 2008, 93(8): 081918.

[29] ShojiT, KawamuraY, de Ohno Y. Friction welding of bulk metallic glasses to different ones[J]. Materials Science and EngineeringA, 2004, 375/376/377: 394- 398.

[30] Li B, Li Z Y, Xiong J G, et al. Laser welding of Zr45Cu48Al7 bulk glassy alloy[J]. Journal of Alloys and Compounds, 2006, 413(1/2): 118-121.

[31] Wang G, Huang Y J, Shagiev M, et al. Laser welding of Ti40Zr25Ni3Cu12Be20 bulk metallic glass[J]. Materials Science and Engineering A, 2012, 541: 33-37.

[32] 王刚, 黄永江, 沈军, 等. TiZrNiCuBe块体非晶合金激光焊接行为及温度场数值模拟研究[J]. 稀有金属材料与工程, 2014, 43(11): 2713-2718.

    Wang G, Huang Y J, Shen J, et al. Laser welding behavior of TiZrNiCuBe bulk metallic glass and numerical simulation of temperature fields[J]. Rare Metal Materials and Engineering, 2014, 43(11): 2713-2718.

[33] 马焰议, 王海燕, 张宇鹏, 等. Zr67.8Cu24.7Al3.43Ni4.07非晶合金激光焊接晶化控制及组织性能分析[J]. 焊接学报, 2019, 40(12): 138-142, 167.

    Ma Y Y, Wang H Y, Zhang Y P, et al. Crystallization control and microstructural properties of laser welded Zr67.8Cu24.7Al3.43Ni4.07 bulk metallic glasses[J]. Transactions of the China Welding Institution, 2019, 40(12): 138-142, 167.

[34] Kim J, Lee D, Shin S, et al. Phase evolution in Cu54Ni6Zr22Ti18 bulk metallic glass Nd∶YAG laser weld[J]. Materials Science and Engineering A, 2006, 434(1/2): 194-201.

[35] Chen B, Shi T L, Li M, et al. Laser welding of annealed Zr55Cu30Ni5Al10 bulk metallic glass[J]. Intermetallics, 2014, 46: 111-117.

[36] Wang H S, Chiou M S, Chen H G, et al. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass[J]. Materials Chemistry and Physics, 2011, 129(1/2): 547-552.

[37] 王刚. Ti40Zr25Ni3Cu12Be20块体非晶合金的特种焊接行为[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    WangG. Special welding behaviors of a Ti40Zr25Ni3Cu12Be20 bulk metallic glass[D]. Harbin: Harbin Institute of Technology, 2012.

[38] Terajima T, Kimura H, Inoue A. Butt welding of Mg-Cu-Gd bulk metallic glass using a high-brightness fiber laser[J]. Transaction of JWRI, 2010, 39(1): 61-64.

[39] Jones H. Observations on a structural transition in aluminium alloys hardened by rapid solidification[J]. Materials Science and Engineering, 1969, 5(1): 1-18.

[40] Cui C Y, Hu J D, Liu Y H, et al. Formation of nano-crystalline and amorphous phases on the surface of stainless steel by Nd∶YAG pulsed laser irradiation[J]. Applied Surface Science, 2008, 254(21): 6779-6782.

[41] Mojaver R, Mojtahedi F, Shahverdi H R, et al. Study on feasibility of producing an amorphous surface layer of Fe49Cr18Mo7B16C4Nb3 by pulsed Nd∶YAG laser surface melting[J]. Applied Surface Science, 2013, 264: 176-183.

[42] 葛亚琼. 快速冷却下镁合金激光表面改性行为研究[D]. 太原: 太原理工大学, 2014.

    Ge YQ. Research on laser surface modifying behavior of magnesium alloy with rapid cooling[D]. Taiyuan: Taiyuan University of Technology, 2014.

[43] Yang Y Q, Song Y L, Wu W T, et al. Multi-pass overlapping laser glazing of FeCrPC and CoNiSiB alloys[J]. Thin Solid Films, 1998, 323(1/2): 199-202.

[44] 姚寿山, 李戈扬, 胡文彬. 表面科学与技术[M]. 北京: 机械工业出版社, 2005.

    Yao SS, Li GY, Hu WB. Surface science and technology[M]. Beijing: China Machine Press, 2005.

[45] 王建强. 热喷涂非晶金属涂层: 腐蚀与力学性能研究[C]∥中国表面工程协会热喷涂专业委员会. 第二十届国际热喷涂研讨会暨第二十一届全国热喷涂年会论文集.[出版地不详: 出版者不详], 2017: 16- 28.

    Wang JQ. Thermal spraying amorphous metallic coatings: corrosion and mechanical properties study[ C]∥Thermal Spraying Professional Committee of China Surface Engineering Association. Proceedings of the 20th International Thermal Spraying Seminar and the 21st National Thermal Spraying Annual Conference. [S.l.: s.n.], 2017: 16- 28.

[46] Yoshioka H, Asami K, Kawashima A, et al. Laser-processed corrosion-resistant amorphous Ni-Cr-P-B surface alloys on a mild steel[J]. Corrosion Science, 1987, 27(9): 981-995.

[47] Zhang P L, Yan H, Yao C W, et al. Synthesis of Fe-Ni-B-Si-Nb amorphous and crystalline composite coatings by laser cladding and remelting[J]. Surface and Coatings Technology, 2011, 206(6): 1229-1236.

[48] 黄开金, 林鑫, 陈池, 等. AZ91D镁合金表面激光熔覆Zr-Cu-Ni-Al/TiC复合粉末的组织与磨损[J]. 中国激光, 2007, 34(4): 549-554.

    Huang K J, Lin X, Chen C, et al. Microstructure and wear behaviour of laser-clad Zr-Cu-Ni-Al/TiC composites on AZ91D magnesium alloy[J]. Chinese Journal of Lasers, 2007, 34(4): 549-554.

[49] 李刚, 侯俊英, 刘丽, 等. 激光熔覆Ni基非晶复合涂层组织结构及性能研究[J]. 表面技术, 2010, 39(4): 15-17, 24.

    Li G, Hou J Y, Liu L, et al. Study on microstructure and properties of the Ni-based amorphous composite coating prepared by laser cladding[J]. Surface Technology, 2010, 39(4): 15-17, 24.

[50] 鲁青龙, 王彦芳, 栗荔, 等. 扫描速度对激光熔覆铁基非晶复合涂层组织与性能的影响[J]. 中国激光, 2013, 40(2): 0203007.

    Lu Q L, Wang Y F, Li L, et al. Effects of scanning speed on microstructures and properties of laser cladding Fe-based amorphous composite coatings[J]. Chinese Journal of Lasers, 2013, 40(2): 0203007.

[51] Li R, Chen Z, Gu J, et al. Effects of heat inputs on the structure of Ni-based amorphous composite coatings applied with laser cladding[J]. Materiali in Tehnologije, 2019, 53(4): 521-526.

[52] Gao Y L, Jie M, Zhang H B. Influence of laser scanning speed on Cu-Zr-Al composite coatings on Mg alloys[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(6): 568-573.

[53] Chang Z, Wang W, Ge Y. Preparing Zr65Al7.5Ni10Cu17.5 bulk metallic glasses based on point-line-face-body theory[J]. Applied Optics, 2016, 55(14): 3787-3793.

[54] 高亚丽, 王存山, 熊党生, 等. 激光工艺参数对镁合金非晶涂层制备的影响[J]. 材料热处理学报, 2009, 30(4): 146-150, 155.

    Gao Y L, Wang C S, Xiong D S, et al. Influence of laser technology parameters on preparation of amorphous coatings on magnesium alloy[J]. Transactions of Materials and Heat Treatment, 2009, 30(4): 146-150, 155.

[55] Wang Y F, Lu Q L, Xiao L J, et al. Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 2014, 43(2): 274-277.

[56] Hou X C, Du D, Wang K M, et al. Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding[J]. Metals, 2018, 8(8): 622-635.

[57] 陈明慧, 朱红梅, 王新林. 激光熔覆制备金属表面非晶涂层研究进展[J]. 材料工程, 2017, 45(1): 120-128.

    Chen M H, Zhu H M, Wang X L. Research progress on laser cladding amorphous coatings on metallic substrates[J]. Journal of Materials Engineering, 2017, 45(1): 120-128.

[58] Guo P, Lu Y, Ehmann K F, et al. Generation of hierarchical micro-structures for anisotropic wetting by elliptical vibration cutting[J]. CIRP Annals, 2014, 63(1): 553-556.

[59] Hu Z, Gorumlu S, Aksak B, et al. Patterning of metallic glasses using polymer templates[J]. Scripta Materialia, 2015, 108: 15-18.

[60] He P, Li L K, Wang F, et al. Bulk metallic glass mold for high volume fabrication of micro optics[J]. Microsystem Technologies, 2016, 22(3): 617-623.

[61] Jia W, Peng Z N, Wang Z J, et al. The effect of femtosecond laser micromachining on the surface characteristics and subsurface microstructure of amorphous FeCuNbSiB alloy[J]. Applied Surface Science, 2006, 253(3): 1299-1303.

[62] SanoT, TakahashiK, HiroseA, et al., 2007, 539/540/541/542/543: 1951- 1954.

[63] Lin H K, Lee C J, Hu T T, et al. Pulsed laser micromachining of Mg-Cu-Gd bulk metallic glass[J]. Optics and Lasers in Engineering, 2012, 50(6): 883-886.

[64] Williams E, Brousseau E B. Nanosecond laser processing of Zr41.2Ti13.8Cu12.5Ni10Be22.5 with single pulses[J]. Journal of Materials Processing Technology, 2016, 232: 34-42.

[65] 曹友朋. 能量密度对飞秒激光烧蚀CuZr非晶合金的影响及无相变烧蚀机理分析[D]. 衡阳: 南华大学, 2017.

    Cao YP. Effect of fluence on CuZr amorphous alloy ablated by femtosecond laser and analysis of no-phase change ablation mechanism[D]. Hengyang: University of South China, 2017.

[66] Wang X L, Lu P X, Dai N L, et al. Morphology and oxidation of Zr-based amorphous alloy ablated by femtosecond laser pulses[J]. Applied Physics A, 2007, 89(2): 547-552.

[67] Huang H, Jun N, Jiang M Q, et al. Nanosecond pulsed laser irradiation induced hierarchical micro/nanostructures on Zr-based metallic glass substrate[J]. Materials & Design, 2016, 109: 153-161.

[68] Fornell J, Pellicer E, Garcia-Lecina E, et al. Structural and mechanical modifications induced on Cu47.5Zr47.5Al5 metallic glass by surface laser treatments[J]. Applied Surface Science, 2014, 290: 188-193.

[69] 姚燕生, 葛张森, 陈庆波, 等. 医用锆基块体非晶合金飞秒激光加工表面特性研究[J]. 激光与光电子学进展, 2020, 57(11): 111409.

    Yao Y S, Ge Z S, Chen Q B, et al. Surface characteristics of medical Zr-based bulk metallic glass processed by femtosecond laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111409.

[70] Huang H, Yan J W. Surface patterning of Zr-based metallic glass by laser irradiation induced selective thermoplastic extrusion in nitrogen gas[J]. Journal of Micromechanics and Microengineering, 2017, 27(7): 075007.

[71] Du C Z, Wang C Y, Zhang T, et al. Reduced bacterial adhesion on zirconium-based bulk metallic glasses by femtosecond laser nanostructuring[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2020, 234(4): 387-397.

姚燕生, 唐建平, 张亚超, 胡衍雷, 吴东. 非晶合金激光制造技术研究进展[J]. 中国激光, 2021, 48(2): 0202012. Yansheng Yao, Jianping Tang, Yachao Zhang, Yanlei Hu, Dong Wu. Development of Laser Fabrication Technology for Amorphous Alloys[J]. Chinese Journal of Lasers, 2021, 48(2): 0202012.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!