中国激光, 2016, 43 (7): 0701006, 网络出版: 2016-07-13   

光学层析成像用1.7 μm波段增益谱和宽带光源实验研究

Experimental Research on Broadband Optical Source and Gain Spectrum for Optical Coherence Tomography at 1.7 μm Region
作者单位
1 长春理工大学空间光电技术国家与地方联合工程研究中心, 吉林 长春 130022
2 长春理工大学光电工程学院, 吉林 长春 130022
3 长春理工大学理学院, 吉林 长春 130022
摘要
1.7 μm波段光源在光学相干层析成像(OCT)系统中可以减少组织散射和吸收损耗,从而增加成像深度。提出以放大自发辐射(ASE)光源抽运长度为300 m的高非线性光纤和长度为10 km的色散位移光纤产生连续光源。其中,后置于ASE抽运源的可调谐滤波器调节连续光源的峰值波长和功率,所得光源经过掺铒光纤吸收整形后得到峰值波长为1675 nm,10 dB谱宽约为75 nm的连续光源。为了在不提高抽运功率的情况下提高OCT信噪比,增加了萨尼亚克滤波器,得到了周期为14 nm的近似多波长宽带光源。实验结果表明,该结构可实现1.7 μm波段的宽带光源,实验分析结果为OCT新型光源及1.7 μm波段光纤激光器提供参考。
Abstract
Optical sources at 1.7 μm region of optical coherent tomography (OCT) can reduce scattering and absorption in tissue, and enhance the imaging depth. A 300 m long high nonlinear optical fiber and a 10 km long dispersion shifted fiber are pumped by amplified spontaneous emission (ASE) beam to generate continuous spectrum. The continuous light source at peak wavelength of 1675 nm and 10 dB linewidth of 75 nm can be achieved after erbium-doped fiber absorption, by adjusting the peak wavelength and power of the tunable filter after ASE source. In order to improve OCT signal sensitivity without increasing the optical illumination power, a multi-wavelength broadband light source with 14 nm period is obtained by adding a Sagnac filter. The optical sources at the 1.7 μm region is achieved by the proposed method. Experimental results can provide reference for OCT new light source and 1.7 μm region fiber laser.
参考文献

[1] Fercher A F, Drexler W, Hitzenberger C K, et al.. Optical coherence tomography-principles and applications[J]. Reports on Progress in Physics, 2003, 66(2): 239.

[2] Tanaka M, Hirano M, Murashima K, et al.. 1.7-μm spectroscopic spectral-domain optical coherence tomography for imaging lipid distribution within blood vessel[J]. Optics Express, 2015, 23(5): 6645-6655.

[3] Bouma B E, Tearney G J. Clinical imaging with optical coherence tomography[J]. Academic Radiology, 2002, 9(8): 942-953.

[4] Fujimoto J G, Boppart S A, Tearney G J, et al.. High resolution in vivo intra-arterial imaging with optical coherence tomography[J]. Heart, 1999, 82(2): 128-133.

[5] Tearney G J, Yabushita H, Houser S L, et al.. Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography[J]. Circulation, 2003, 107(1): 113-119.

[6] Boppart S A, Luo W, Marks D L, et al.. Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer[J]. Breast Cancer Research and Treatment, 2004, 84(2): 85-97.

[7] Zuluaga A F, Follen M, Boiko I, et al.. Optical coherence tomography: A pilot study of a new imaging technique for noninvasive examination of cervical tissue[J]. American Journal of Obstetrics and Gynecology, 2005, 193(1): 83-88.

[8] 石博雅, 孟卓, 刘铁根, 等. OCT系统对人体牙齿组织的非失真成像深度的研究[J]. 光学学报, 2014, 34(2): 0217001.

    Shi Boya, Meng Zhuo, Liu Tiegen, et al.. Non-distorted imaging depth of optical coherence tomography system in human dental tissues[J]. Acta Optica Sinica, 2014, 34(2): 0217001.

[9] 杨珊珊, 朱锐, 米磊, 等. 光学相干层析成像技术对壁画的检测研究[J]. 光学学报, 2015, 35(5): 0511005.

    Yang Shanshan, Zhu Rui, Mi Lei, et al.. Application of optical coherence tomography in the detection of the mural[J]. Acta Optica Sinica, 2015, 35(5): 0511005.

[10] Alexander V V, Ke K, Xu Z, et al.. Photothermolysis of sebaceous glands in human skin ex vivo with a 1708 nm Raman fiber laser and contact cooling[J]. Lasers in Surgery and Medicine, 2011, 43(6): 470-480.

[11] Workman J, Jr, Weyer L. Practical guide and spectral atlas for interpretive near-infrared spectroscopy[M]. Boca Raton: CRC Press, 2012.

[12] Bajraszewski T, Wojtkowski M, Szkulmowski M, et al.. Improved spectral optical coherence tomography using optical frequency comb[J]. Optics Express, 2008, 16(6): 4163-4176.

[13] Jung E J, Park J S, Jeong M Y, et al.. Spectrally-sampled OCT for sensitivity improvement from limited optical power[J]. Optics Express, 2008, 16(22): 17457-17467.

[14] Quan Z, Gao C X, Guo H T, et al.. 400 mW narrow-linewidth Tm-doped silica fiber laser output near 1750 nm with volume Bragg grating[J]. Scientific Reports, 2015, 5: 12034.

[15] Daniel J M, Simakov N, Tokurakawa M, et al.. Ultra-short wavelength operation of a two-micron thulium fiber laser[C]. 2014 Conference on Lasers and Electro-Optics, 2014: SW1N. 2.

[16] Li Z, Alam S, Daniel J M O, et al.. 90 nm gain extension towards 1.7 μm for diode-pumped silica-based thulium-doped fiber amplifiers[C]. European Conference on Optical Communication, 2014: 1-3.

[17] Li Z, Jung Y, Simakov N, et al.. Extreme short wavelength operation (1.65-1.7 μm) of silica-based thulium-doped fiber amplifier[C]. IEEE Optical Fiber Communication Conference, 2015.

[18] Abeeluck A K, Headley C, Jrgensen C G. High-power supercontinuum generation in highly nonlinear, dispersion-shifted fibers by use of a continuous-wave Raman fiber laser[J]. Optics letters, 2004, 29(18): 2163-2165.

[19] Kawagoe H, Ishida S, Aramaki M, et al.. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography[J]. Biomedical Optics Express, 2014, 5(3): 932-943.

[20] Dong P, Gui L, Xiao X, et al.. Experimental investigation of supercontinuum generation in highly nonlinear dispersion-shifted fiber pumped by spectrum-sliced amplified spontaneous emission[J]. Optics Communications, 2009, 282(14): 3007-3011.

[21] Tilma B W, Jiao Y, Kotani J, et al.. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 wavelength region[J]. IEEE Journal of Quantum Electronics, 2012, 48(2): 87-98.

[22] Yamada M, Ono H, Ono J. 1.7 μm band optical fiber amplifier[C]. IEEE Optical Fiber Communication Conference, 2014: 1-3.

[23] Dianov E M, Firstov S V, Alyshev S V, et al.. A new bismuth-doped fibre laser, emitting in the range 1625-1775 nm[J]. Quantum Electronics, 2014, 44(6): 503-504.

[24] Agrawal G P. Nonlinear fiber optics[M]. New York: Academic Press, 2007.

[25] 龙青云, 吴庭万, 胡素梅, 等. 同向抽运光纤拉曼放大器的阈值特性[J]. 激光与光电子学进展, 2014, 51(3): 030603.

    Long Qingyun, Wu Tingwan, Hu Sumei, et al.. Threshold characteristics of forward-pumped fiber Raman amplifier[J]. Laser & Optoelectronics Progress, 2014, 51(3): 030603.

张鹏, 王天枢, 张岩, 刘鹏, 李晓燕, 张立中, 佟首峰, 姜会林. 光学层析成像用1.7 μm波段增益谱和宽带光源实验研究[J]. 中国激光, 2016, 43(7): 0701006. Zhang Peng, Wang Tianshu, Zhang Yan, Liu Peng, Li Xiaoyan, Zhang Lizhong, Tong Shoufeng, Jiang Huilin. Experimental Research on Broadband Optical Source and Gain Spectrum for Optical Coherence Tomography at 1.7 μm Region[J]. Chinese Journal of Lasers, 2016, 43(7): 0701006.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!