Matter and Radiation at Extremes, 2017, 2 (1): 9, Published Online: Jan. 17, 2018  

Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions

Author Affiliations
Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract
The low-mode shell asymmetry and high-mode hot spot mixing appear to be the main reasons for the performance degradation of the National Ignition Facility (NIF) implosion experiments. The effects of the mode coupling between low-mode P2 radiation flux asymmetry and intermediate-mode L= 24 capsule roughness on the implosion performance of ignition capsule are investigated by two-dimensional radiation hydrodynamic simulations. It is shown that the amplitudes of new modes generated by the mode coupling are in good agreement with the second-order mode coupling equation during the acceleration phase. The later flow field not only shows large areal density P2 asymmetry in the main fuel, but also generates large-amplitude spikes and bubbles. In the deceleration phase, the increasing mode coupling generates more new modes, and the perturbation spectrum on the hot spot boundary is mainly from the strong mode interactions rather than the initial perturbation conditions. The combination of the low-mode and high-mode perturbations breaks up the capsule shell, resulting in a significant reduction of the hot spot temperature and implosion performance.
References

[1] S. Atzeni, J. Meyer-ter-Vehn, The Physics of Ineritial Fusion, Oxford Science, Oxford, 2004.

[2] J.D. Lindl, Development of the indirect-drive approach to inertial confinement fusion and the target physics basis for ignition and gain, Phys. Plasmas 2 (1995) 3933.

[3] J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, et al., The physics basis for ignition using indirect-drive targets on the National ignition Facility, Phys. Plasmas 11 (2004) 339.

[4] M.J. Edwards, P.K. Patel, J.D. Lindl, L.J. Atherton, S.H. Glenzer, et al., Progress towards ignition on the National Ignition Facility, Phys. Plasmas 20 (2013) 070501.

[5] D.S. Clark, C.R. Weber, J.L. Milovich, J.D. Salmonson, A.L. Kritcher, et al., Three-dimensional simulations for low foot and high foot implosion experiments on the National Ignition Facility, Phys. Plasmas 23 (2016) 056302.

[6] R.P.J. Town, D.K. Bradley, A. Kritcher, O.S. Jones, J.R. Rygg, et al., Dynamic symmetry of indirectly driven inertial confinement fusion capsules on the National Ignition Facility, Phys. Plasmas 21 (2014) 056313.

[7] A.L. Kritcher, R.P.J. Town, D.K. Bradley, D.S. Clark, B.K. Spears, et al., Metrics for long wavelength asymmetries in inertial confinement fusion implosions on the National Ignition Facility, Phys. Plasmas 21 (2014) 042708.

[8] J.F. Gu, Z.S. Dai, Z.F. Fan, S.Y. Zou, W.H. Ye, et al., A new metric of the low-mode asymmetry for ignition target designs, Phys. Plasmas 21 (2014) 012704.

[9] J.L. Kline, D.A. Callahan, S.H. Glenzer, N.B. Meezan, J.D. Moody, et al., Hohlraum energetics scaling to 520 TW on the National Ignition Facility, Phys. Plasmas 20 (2013) 056314.

[10] J.D. Moody, D.A. Callahan, D.E. Hinkel, P.A. Amendt, K.L. Baker, et al., Progress in hohlraum physics for the National Ignition Facility, Phys. Plasmas 21 (2014) 056317.

[11] L. Rayleigh, Scientific Papers, II, Cambridge University Press, Cambridge, England, 1900, p. 200.

[12] G. Taylor, The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, Proc. R. Soc. Lond. 201 (1950) 192.

[13] M.S. Plesset, On the stability of fluid flows with spherical symmetry, J. Appl. Phys. 25 (1954) 96.

[14] J.D. Lindl, Overview and Status of the National Ignition Campaign on the NIF, Presentation to Ignition Science Workshop, 2012.

[15] C. Cerjan, P. Springer, S.M. Sepke, Integrated diagnostic analysis of inertial confinement fusion capsule performance, Phys. Plasmas 20 (2013) 056319.

[16] A.B. Zylstra, J.A. Frenje, F.H. S eguin, J.R. Rygg, A. Kritcher, et al., Inflight observations of low-mode rR asymmetries in NIF implosions, Phys. Plasmas 22 (2015) 056301.

[17] N.B. Meezan, L.F. Berzak Hopkins, S. Le Pape, L. Divol, A.J. MacKinnon, et al., Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums, Phys. Plasmas 22 (2015) 062703.

[18] G.T. Feng, K. Lan, D.X. Lai, A comparison between two averaging methods of multi-group parameters in ICF radiation transfer calculation, Chin, J. Comput. Phys. 18 (2001) 3.

[19] D.H. Munro, P.M. Celliers, G.W. Collins, D.M. Gold, L.B. Da Silva, et al., Shock timing technique for the National Ignition Facility, Phys. Plasmas 8 (2001) 2245.

[20] W.H. Ye, W.Y. Zhang, X.T. He, Stabilization of ablative Rayleigh-Taylor instability due to change of the Atwood number, Phys. Rev. E 65 (2002) 057401.

[21] J.F. Gu, Z.S. Dai, S.Y. Zou, P. Song, W.H. Ye, et al., New tuning method of the low-mode asymmetry for ignition capsule implosions, Phys. Plasmas 22 (2015) 122704.

[22] F.J.D. Serduke, E. Minguez, S.J. Davidson, C.A. Iglesias, WorkOp-IV summary: Lessons from iron opacities, J. Quant. Spectrosc. Radiat. Transf. 65 (2000) 527.

[23] R.D. More, K.H. Warren, D.A. Young, G.B. Zimmerman, A new quotidian equation of state (QEOS) for hot dense matter, Phys. Fluids. 31 (1988) 3059.

[24] D. Ofer, D. Shvarts, Z. Zinamon, S.A. Orszag, Mode coupling in nonlinear Rayleigh-Taylor instability, Phys. Fluids B 4 (1992) 3549.

[25] D. Ofer, U. Alon, D. Shvarts, R.L. McCronry, C.P. Verdon, Mode coupling for the nonlinear multimode Rayleigh-Taylor instability, Phys. Plasmas 3 (1996) 3073.

Jianfa Gu, Zhensheng Dai, Shiyang Zou, Wenhua Ye, Wudi Zheng, Peijun Gu, Shaoping Zhu. Effects of mode coupling between low-mode radiation flux asymmetry and intermediate-mode ablator roughness on ignition capsule implosions[J]. Matter and Radiation at Extremes, 2017, 2(1): 9.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!