发光学报, 2016, 37 (10): 1167, 网络出版: 2017-01-13  

面向生物医学应用的光学氧气纳米传感器

Optical Oxygen Nanosensors Towards Biomedical Applications
作者单位
1 北京交通大学 理学院, 北京 100044
2 中央民族大学 理学院, 北京 100081
引用该论文

彭洪尚, 申睿颖, 王小卉. 面向生物医学应用的光学氧气纳米传感器[J]. 发光学报, 2016, 37(10): 1167.

PENG Hong-shang, SHEN Rui-ying, WANG Xiao-hui. Optical Oxygen Nanosensors Towards Biomedical Applications[J]. Chinese Journal of Luminescence, 2016, 37(10): 1167.

参考文献

[1] SEMENZA G L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1[J]. Biochem. J., 2007, 405(1):1-9.

[2] BRAND M D, NICHOLLS D G. Assessing mitochondrial dysfunction in cells[J]. Biochem. J., 2011, 435(2):297-312.

[3] AIBA S. Horizons of Biochemical Engineering[M]. Oxford: Oxford University Press, 1987:213.

[4] SKOOG D A, WEST D M, HOLLER F J. Fundamentals of Analytical Chemistry[M]. 5th ed. New York: Saunders College Publishing, 1988:344.

[5] AMAO Y. Probes and polymers for optical sensing of oxygen[J]. Microchim. Acta, 2003, 143(1):1-12.

[6] LONGMUIR I S. Oxygen Transport to Tissue Ⅷ[M]. New York: Plenum Press, 1986:189-193.

[7] MCDONAGH C, BURKE C S, Maccraith B D. Optical chemical sensors[J]. Chem. Rev., 2008, 108(2):400-422.

[8] WANG X D, CHEN X, XIE Z X, et al.. Reversible optical sensor strip for oxygen[J]. Angew. Chem. Int. Ed., 2008, 47(39):7450-7453.

[9] WANG X D, MEIER R J, LINK M, et al.. Photographing oxygen distribution[J]. Angew. Chem. Int. Ed., 2010, 49(29):4907-4909.

[10] FERCHER A, PONOMAREV G V, YASHUNSKI D, et al.. Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes[J]. Anal. Bioanal. Chem., 2010, 396(5):1793-1803.

[11] DUNPHY I, VINOGRADOV S A, WILSON D F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence[J]. Anal. Biochem., 2002, 310(2):191-198.

[12] FOERG C, MERKLE H P. On the biomedical promise of cell penetrating peptides: limits versus prospects[J]. J. Pharm. Sci., 2008, 97(1):144-162.

[13] DMITRIEV R I, ROPIAK H, PONOMAREV G V, et al.. Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2[J]. Bioconjugate Chem., 2011, 22(12):2507-2518.

[14] WANG X H, PENG H S, DING H, et al.. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing[J]. J. Mater. Chem., 2012, 22(31):16066-16071.

[15] FERCHER A, BORISOV S M, ZHDANOV A V, et al.. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles[J]. ACS Nano, 2011, 5(7):5499-5508.

[16] KUMAR S, HARRISON N, RICHARDS-KORTUM R, et al.. Plasmonic nanosensors for imaging intracellular biomarkers in live cells[J]. Nano Lett., 2007, 7(5):1338-1343.

[17] LEE K Y E, SMITH R, KOPELMAN R. Nanoparticle PEBBLE sensors in live cells and in vivo[J]. Annu. Rev. Anal. Chem., 2009, 2(1):57-76.

[18] WU C F, BULL B, CHRISTENSEN K, et al.. Ratiometric single-nanoparticle oxygen sensors for biological imaging[J]. Angew. Chem. Int. Ed., 2009, 48(15):2741-2745.

[19] WANG X H, PENG H S, CHANG Z, et al.. Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen[J]. Microchim. Acta, 2012, 178(1-2):147-152.

[20] KOO Y E L, CAO Y F, KOPELMAN R, et al.. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors[J]. Anal. Chem., 2004, 76(9):2498-2505.

[21] XU H, AYLOTT J W, KOPELMAN R, et al.. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma[J]. Anal. Chem., 2001, 73(17):4124-4133.

[22] MISTLBERGER G, MEDINA-CASTILLO A L, BORISOV S M, et al.. Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors[J]. Microchim. Acta, 2011, 172(3-4):299-308.

[23] MARN-SUREZ M, ARIAS-MARTOS M C, GALEANO-DI·AZ T, et al.. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen[J]. Microchim. Acta, 2013, 180(13-14):1201-1209.

[24] PENG H S, CHIU D T. Soft fluorescent nanomaterials for biological and biomedical imaging[J]. Chem. Soc. Rev., 2015, 44(14):4699-4722.

[25] GUICE K B, CALDORERA M E, MCSHANE M J. Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles[J]. J. Biomed. Opt., 2005, 10(6):064031.

[26] KONDRASHINA A V, DMITRIEV R I, BORISOV S M, et al.. A phosphorescent nanoparticle-based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities[J]. Adv. Funct. Mater., 2012, 22(23):4931-4939.

[27] WANG X D, GORRIS H H, STOLWIJK J A, et al.. Self-referenced RGB colour imaging of intracellular oxygen[J]. Chem. Sci., 2011, 2(5):901-906.

[28] LEE Y E K, ULBRICH E E, KIM G, et al.. Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity[J]. Anal. Chem., 2010, 82(20):8446-8455.

[29] JI J, ROSENZWEIG N, JONES I, et al.. Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages[J]. Anal. Chem., 2001, 73(15):3521-3527.

[30] MCEVOY A K, MCDONAGH C M, MACCRAITH B D. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings[J]. Analyst, 1996, 121(6):785-788.

[31] MCLAURIN E J, GREYTAK A B, BAWENDI M G, et al.. Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen[J]. J. Am. Chem. Soc., 2009, 131(36):12994-13001.

[32] LIU L N, LI B, YING J, et al.. Synthesis and characterization of a new trifunctional magnetic-photoluminescent-oxygen-sensingnanomaterial[J]. Nanotechnology, 2008, 19(49):495709.

[33] AMELIA M, LAVIE-CAMBOT A, MCCLENAGHAN N D, et al.. A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot[J]. Chem. Commun., 2011, 47(1):325-327.

[34] FENG Y, CHENG J H, ZHOU L, et al.. Ratiometric optical oxygen sensing: a review in respect of material design[J]. Analyst, 2012, 137(21):4885-4901.

[35] ZHANG G Q, PALMER G M, DEWHIRST M W, et al.. A dual-emissive-materials design concept enables tumour hypoxia imaging[J]. Nat. Mater., 2009, 8(9):747-751.

[36] QUARANTA M, BORISOV S M, KLIMANT I. Indicators for optical oxygen sensors[J]. Bioanal. Rev., 2012, 4(2-4):115-157.

[37] FERCHER A, ORIORDAN T C, ZHDANOV A V, et al.. Imaging of cellular oxygen and analysis of metabolic responses of mammalian cells[J]. Methods Mol. Biol., 2010, 591:257-273.

[38] DMITRIEV R I, PAPKOVSKY D B. Optical probes and techniques for O2 measurement in live cells and tissue[J]. Cell. Mol. Life Sci., 2012, 69(12):2025-2039.

[39] PAPKOVSKY D B. Methods in optical oxygen sensing: protocols and critical analyses[J]. Methods Enzymol., 2004, 381:715-735.

[40] ORIORDAN T C, ZHDANOV A V, PONOMAREV G V, et al.. Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry[J]. Anal. Chem., 2007, 79(24):9414-9419.

[41] SHARMAN K K, PERIASAMY A, ASHWORTH H, et al.. Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes[J]. Anal. Chem., 1999, 71(5):947-952.

[42] HYNES J, MARROQUIN L D, OGURTSOV V I, et al.. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes[J]. Toxicol. Sci., 2006, 92(1):186-200.

[43] SAKADIC' S, ROUSSAKIS E, YASEEN M A, et al.. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue[J]. Nat. Methods, 2010, 7(9):755-759.

[44] HOLST G, KOHLS O, KLIMANT I, et al.. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples[J]. Sens. Actuators B, 1998, 51(1-3):163-170.

[45] WOODS R J, SCYPINSKI S, LOVE L J C. Transient digitizer for the determination of microsecond luminescence lifetimes[J]. Anal. Chem., 1984, 56(8):1395-1400.

[46] LIEBSCH G, KLIMANT I, FRANK B, et al.. Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors[J]. Appl. Spectrosc., 2000, 54(4):548-559.

[47] PAPKOVSKY D B, DMITRIEV R I. Biological detection by optical oxygen sensing[J]. Chem. Soc. Rev., 2013, 42(22):8700-8732.

[48] DIEPART C, VERRAX J, CALDERON P B, et al.. Comparison of methods for measuring oxygen consumption in tumor cells in vitro[J]. Anal. Biochem., 2010, 396(2):250-256.

[49] HYNES J, NATOLI E JR, WILL Y. Fluorescent pH and Oxygen Probes of The Assessment of Mitochondrial Toxicity in Isolated Mitochondria and Whole Cells[M]. Current Protocols in Toxicology, Chapter 2: Unit 2.16, 2009.

[50] WOTZLAW C, BERNARDINI A, BERCHNER-PFANNSCHMIDT U, et al.. Multifocal animated imaging of changes in cellular oxygen and calcium concentrations and membrane potential within the intact adult mouse carotid body ex vivo[J]. Am. J. Physiol. Cell Physiol., 2011, 301(2):C266-C271.

[51] HUPPERT T J, ALLEN M S, BENAV H, et al.. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation[J]. J. Cereb. Blood Flow Metab., 2007, 27(6):1262-1279.

[52] NAPP J, BEHNKE T, FISCHER L, et al.. Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia[J]. Anal. Chem., 2011, 83(23):9039-9046.

[53] LIU J N, LIU Y, BU W B, et al.. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation[J]. J. Am. Chem. Soc., 2014, 136(27):9701-9709.

[54] DMITRIEV R I, ZHDANOV A V, JASIONEK G, et al.. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes[J]. Anal. Chem., 2012, 84(6):2930-2938.

[55] ZHDANOV A V, OGURTSOV V I, TAYLOR C T, et al.. Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique[J]. Integr. Biol., 2010, 2(9):443-451.

[56] MA H R, PENG H S, YOU F T, et al.. Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors[J]. Methods Appl. Fluoresc., 2016, 4(3):035001.

[57] MIK E G, STAP J, SINAASAPPEL M, et al.. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin Ⅸ[J]. Nat. Methods, 2006, 3(11):939-945.

[58] MIK E G, JOHANNES T, ZUURBIER C J, et al.. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique[J]. Biophys. J., 2008, 95(8):3977-3990.

[59] WILL Y, HYNES J, OGURTSOV V I, et al.. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes[J]. Nat. Protoc., 2007, 1(6):2563-2572.

[60] WANG X H, PENG H S, YANG L, et al.. Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria[J]. J. Mater. Chem. B, 2013, 1(38):5143-5152.

[61] WANG X H, PENG H S, YANG L, et al.. Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity[J]. Angew. Chem. Int. Ed., 2014, 126(46):12679-12683.

[62] STEINER M S, DUERKOP A, WOLFBEIS O S. Optical methods for sensing glucose[J]. Chem. Soc. Rev., 2011, 40(9):4805-4839.

[63] BORISOV S M, WOLFBEIS O S. Optical biosensors[J]. Chem. Rev., 2008, 108(2):423-461.

[64] PING J T, PENG H S, DUAN W B, et al.. Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy[J]. J. Mater. Chem. B, 2016, 4(25):4482-4489.

彭洪尚, 申睿颖, 王小卉. 面向生物医学应用的光学氧气纳米传感器[J]. 发光学报, 2016, 37(10): 1167. PENG Hong-shang, SHEN Rui-ying, WANG Xiao-hui. Optical Oxygen Nanosensors Towards Biomedical Applications[J]. Chinese Journal of Luminescence, 2016, 37(10): 1167.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!