发光学报, 2016, 37 (10): 1167, 网络出版: 2017-01-13  

面向生物医学应用的光学氧气纳米传感器

Optical Oxygen Nanosensors Towards Biomedical Applications
作者单位
1 北京交通大学 理学院, 北京 100044
2 中央民族大学 理学院, 北京 100081
摘要
在生物医学领域, 溶氧的检测具有十分重要的意义。近年来氧气传感器的研究取得了重要的进展, 尤其是纳米尺寸的光学氧气传感器倍受重视。光学氧气纳米传感器具有检测灵敏度高、稳定性好、易于生物功能化等优点, 特别适用于在(亚)细胞层次或者生物组织内溶氧的实时检测。本文主要从氧气荧光探针的种类、传感器的基质构成、纳米传感器的构建方法、检测模式和生物医学应用等几个方面出发, 结合本研究组在光学氧气纳米传感器的研究进展进行综述, 并对其在生物医学领域中的主要应用进行了阐述。
Abstract
The determination of oxygen concentration is of great importance in biological applications. In recent years, significant progress has been made in the field, and nanosized optical oxygen sensors have gained particular attraction owing to the merit of high sensitivity, good photostability, facile bioconjugation and ideal dimension for in vitro and in vivo applications. In this review, we focus on optical oxygen nanosensors, including the types of suitable oxygen probes, structure properties, preparation methods, and different detection modalities. In addition, for different O2 nanosensors, the analytical performance and applicability in specific biological applications are also outlined. Generally this review is meant to give the potential user a guide to select the most suitable optical oxygen nanosensor and detection modalities for their particular biological detection.
参考文献

[1] SEMENZA G L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1[J]. Biochem. J., 2007, 405(1):1-9.

[2] BRAND M D, NICHOLLS D G. Assessing mitochondrial dysfunction in cells[J]. Biochem. J., 2011, 435(2):297-312.

[3] AIBA S. Horizons of Biochemical Engineering[M]. Oxford: Oxford University Press, 1987:213.

[4] SKOOG D A, WEST D M, HOLLER F J. Fundamentals of Analytical Chemistry[M]. 5th ed. New York: Saunders College Publishing, 1988:344.

[5] AMAO Y. Probes and polymers for optical sensing of oxygen[J]. Microchim. Acta, 2003, 143(1):1-12.

[6] LONGMUIR I S. Oxygen Transport to Tissue Ⅷ[M]. New York: Plenum Press, 1986:189-193.

[7] MCDONAGH C, BURKE C S, Maccraith B D. Optical chemical sensors[J]. Chem. Rev., 2008, 108(2):400-422.

[8] WANG X D, CHEN X, XIE Z X, et al.. Reversible optical sensor strip for oxygen[J]. Angew. Chem. Int. Ed., 2008, 47(39):7450-7453.

[9] WANG X D, MEIER R J, LINK M, et al.. Photographing oxygen distribution[J]. Angew. Chem. Int. Ed., 2010, 49(29):4907-4909.

[10] FERCHER A, PONOMAREV G V, YASHUNSKI D, et al.. Evaluation of the derivates of phosphorescent Pt-coproporphyrin as intracellular oxygen-sensitive probes[J]. Anal. Bioanal. Chem., 2010, 396(5):1793-1803.

[11] DUNPHY I, VINOGRADOV S A, WILSON D F. Oxyphor R2 and G2: phosphors for measuring oxygen by oxygen-dependent quenching of phosphorescence[J]. Anal. Biochem., 2002, 310(2):191-198.

[12] FOERG C, MERKLE H P. On the biomedical promise of cell penetrating peptides: limits versus prospects[J]. J. Pharm. Sci., 2008, 97(1):144-162.

[13] DMITRIEV R I, ROPIAK H, PONOMAREV G V, et al.. Cell-penetrating conjugates of coproporphyrins with oligoarginine peptides: rational design and application for sensing intracellular O2[J]. Bioconjugate Chem., 2011, 22(12):2507-2518.

[14] WANG X H, PENG H S, DING H, et al.. Biocompatible fluorescent core-shell nanoparticles for ratiometric oxygen sensing[J]. J. Mater. Chem., 2012, 22(31):16066-16071.

[15] FERCHER A, BORISOV S M, ZHDANOV A V, et al.. Intracellular O2 sensing probe based on cell-penetrating phosphorescent nanoparticles[J]. ACS Nano, 2011, 5(7):5499-5508.

[16] KUMAR S, HARRISON N, RICHARDS-KORTUM R, et al.. Plasmonic nanosensors for imaging intracellular biomarkers in live cells[J]. Nano Lett., 2007, 7(5):1338-1343.

[17] LEE K Y E, SMITH R, KOPELMAN R. Nanoparticle PEBBLE sensors in live cells and in vivo[J]. Annu. Rev. Anal. Chem., 2009, 2(1):57-76.

[18] WU C F, BULL B, CHRISTENSEN K, et al.. Ratiometric single-nanoparticle oxygen sensors for biological imaging[J]. Angew. Chem. Int. Ed., 2009, 48(15):2741-2745.

[19] WANG X H, PENG H S, CHANG Z, et al.. Synthesis of ratiometric fluorescent nanoparticles for sensing oxygen[J]. Microchim. Acta, 2012, 178(1-2):147-152.

[20] KOO Y E L, CAO Y F, KOPELMAN R, et al.. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors[J]. Anal. Chem., 2004, 76(9):2498-2505.

[21] XU H, AYLOTT J W, KOPELMAN R, et al.. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma[J]. Anal. Chem., 2001, 73(17):4124-4133.

[22] MISTLBERGER G, MEDINA-CASTILLO A L, BORISOV S M, et al.. Mini-emulsion solvent evaporation: a simple and versatile way to magnetic nanosensors[J]. Microchim. Acta, 2011, 172(3-4):299-308.

[23] MARN-SUREZ M, ARIAS-MARTOS M C, GALEANO-DI·AZ T, et al.. Modelling the size and polydispersity of magnetic hybrid nanoparticles for luminescent sensing of oxygen[J]. Microchim. Acta, 2013, 180(13-14):1201-1209.

[24] PENG H S, CHIU D T. Soft fluorescent nanomaterials for biological and biomedical imaging[J]. Chem. Soc. Rev., 2015, 44(14):4699-4722.

[25] GUICE K B, CALDORERA M E, MCSHANE M J. Nanoscale internally referenced oxygen sensors produced from self-assembled nanofilms on fluorescent nanoparticles[J]. J. Biomed. Opt., 2005, 10(6):064031.

[26] KONDRASHINA A V, DMITRIEV R I, BORISOV S M, et al.. A phosphorescent nanoparticle-based probe for sensing and imaging of (intra)cellular oxygen in multiple detection modalities[J]. Adv. Funct. Mater., 2012, 22(23):4931-4939.

[27] WANG X D, GORRIS H H, STOLWIJK J A, et al.. Self-referenced RGB colour imaging of intracellular oxygen[J]. Chem. Sci., 2011, 2(5):901-906.

[28] LEE Y E K, ULBRICH E E, KIM G, et al.. Near infrared luminescent oxygen nanosensors with nanoparticle matrix tailored sensitivity[J]. Anal. Chem., 2010, 82(20):8446-8455.

[29] JI J, ROSENZWEIG N, JONES I, et al.. Molecular oxygen-sensitive fluorescent lipobeads for intracellular oxygen measurements in murine macrophages[J]. Anal. Chem., 2001, 73(15):3521-3527.

[30] MCEVOY A K, MCDONAGH C M, MACCRAITH B D. Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in sol-gel-derived porous silica coatings[J]. Analyst, 1996, 121(6):785-788.

[31] MCLAURIN E J, GREYTAK A B, BAWENDI M G, et al.. Two-photon absorbing nanocrystal sensors for ratiometric detection of oxygen[J]. J. Am. Chem. Soc., 2009, 131(36):12994-13001.

[32] LIU L N, LI B, YING J, et al.. Synthesis and characterization of a new trifunctional magnetic-photoluminescent-oxygen-sensingnanomaterial[J]. Nanotechnology, 2008, 19(49):495709.

[33] AMELIA M, LAVIE-CAMBOT A, MCCLENAGHAN N D, et al.. A ratiometric luminescent oxygen sensor based on a chemically functionalized quantum dot[J]. Chem. Commun., 2011, 47(1):325-327.

[34] FENG Y, CHENG J H, ZHOU L, et al.. Ratiometric optical oxygen sensing: a review in respect of material design[J]. Analyst, 2012, 137(21):4885-4901.

[35] ZHANG G Q, PALMER G M, DEWHIRST M W, et al.. A dual-emissive-materials design concept enables tumour hypoxia imaging[J]. Nat. Mater., 2009, 8(9):747-751.

[36] QUARANTA M, BORISOV S M, KLIMANT I. Indicators for optical oxygen sensors[J]. Bioanal. Rev., 2012, 4(2-4):115-157.

[37] FERCHER A, ORIORDAN T C, ZHDANOV A V, et al.. Imaging of cellular oxygen and analysis of metabolic responses of mammalian cells[J]. Methods Mol. Biol., 2010, 591:257-273.

[38] DMITRIEV R I, PAPKOVSKY D B. Optical probes and techniques for O2 measurement in live cells and tissue[J]. Cell. Mol. Life Sci., 2012, 69(12):2025-2039.

[39] PAPKOVSKY D B. Methods in optical oxygen sensing: protocols and critical analyses[J]. Methods Enzymol., 2004, 381:715-735.

[40] ORIORDAN T C, ZHDANOV A V, PONOMAREV G V, et al.. Analysis of intracellular oxygen and metabolic responses of mammalian cells by time-resolved fluorometry[J]. Anal. Chem., 2007, 79(24):9414-9419.

[41] SHARMAN K K, PERIASAMY A, ASHWORTH H, et al.. Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes[J]. Anal. Chem., 1999, 71(5):947-952.

[42] HYNES J, MARROQUIN L D, OGURTSOV V I, et al.. Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes[J]. Toxicol. Sci., 2006, 92(1):186-200.

[43] SAKADIC' S, ROUSSAKIS E, YASEEN M A, et al.. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue[J]. Nat. Methods, 2010, 7(9):755-759.

[44] HOLST G, KOHLS O, KLIMANT I, et al.. A modular luminescence lifetime imaging system for mapping oxygen distribution in biological samples[J]. Sens. Actuators B, 1998, 51(1-3):163-170.

[45] WOODS R J, SCYPINSKI S, LOVE L J C. Transient digitizer for the determination of microsecond luminescence lifetimes[J]. Anal. Chem., 1984, 56(8):1395-1400.

[46] LIEBSCH G, KLIMANT I, FRANK B, et al.. Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors[J]. Appl. Spectrosc., 2000, 54(4):548-559.

[47] PAPKOVSKY D B, DMITRIEV R I. Biological detection by optical oxygen sensing[J]. Chem. Soc. Rev., 2013, 42(22):8700-8732.

[48] DIEPART C, VERRAX J, CALDERON P B, et al.. Comparison of methods for measuring oxygen consumption in tumor cells in vitro[J]. Anal. Biochem., 2010, 396(2):250-256.

[49] HYNES J, NATOLI E JR, WILL Y. Fluorescent pH and Oxygen Probes of The Assessment of Mitochondrial Toxicity in Isolated Mitochondria and Whole Cells[M]. Current Protocols in Toxicology, Chapter 2: Unit 2.16, 2009.

[50] WOTZLAW C, BERNARDINI A, BERCHNER-PFANNSCHMIDT U, et al.. Multifocal animated imaging of changes in cellular oxygen and calcium concentrations and membrane potential within the intact adult mouse carotid body ex vivo[J]. Am. J. Physiol. Cell Physiol., 2011, 301(2):C266-C271.

[51] HUPPERT T J, ALLEN M S, BENAV H, et al.. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation[J]. J. Cereb. Blood Flow Metab., 2007, 27(6):1262-1279.

[52] NAPP J, BEHNKE T, FISCHER L, et al.. Targeted luminescent near-infrared polymer-nanoprobes for in vivo imaging of tumor hypoxia[J]. Anal. Chem., 2011, 83(23):9039-9046.

[53] LIU J N, LIU Y, BU W B, et al.. Ultrasensitive nanosensors based on upconversion nanoparticles for selective hypoxia imaging in vivo upon near-infrared excitation[J]. J. Am. Chem. Soc., 2014, 136(27):9701-9709.

[54] DMITRIEV R I, ZHDANOV A V, JASIONEK G, et al.. Assessment of cellular oxygen gradients with a panel of phosphorescent oxygen-sensitive probes[J]. Anal. Chem., 2012, 84(6):2930-2938.

[55] ZHDANOV A V, OGURTSOV V I, TAYLOR C T, et al.. Monitoring of cell oxygenation and responses to metabolic stimulation by intracellular oxygen sensing technique[J]. Integr. Biol., 2010, 2(9):443-451.

[56] MA H R, PENG H S, YOU F T, et al.. Sensitive detection of PDT-induced cell damages with luminescent oxygen nanosensors[J]. Methods Appl. Fluoresc., 2016, 4(3):035001.

[57] MIK E G, STAP J, SINAASAPPEL M, et al.. Mitochondrial PO2 measured by delayed fluorescence of endogenous protoporphyrin Ⅸ[J]. Nat. Methods, 2006, 3(11):939-945.

[58] MIK E G, JOHANNES T, ZUURBIER C J, et al.. In vivo mitochondrial oxygen tension measured by a delayed fluorescence lifetime technique[J]. Biophys. J., 2008, 95(8):3977-3990.

[59] WILL Y, HYNES J, OGURTSOV V I, et al.. Analysis of mitochondrial function using phosphorescent oxygen-sensitive probes[J]. Nat. Protoc., 2007, 1(6):2563-2572.

[60] WANG X H, PENG H S, YANG L, et al.. Poly-L-lysine assisted synthesis of core-shell nanoparticles and conjugation with triphenylphosphonium to target mitochondria[J]. J. Mater. Chem. B, 2013, 1(38):5143-5152.

[61] WANG X H, PENG H S, YANG L, et al.. Targetable phosphorescent oxygen nanosensors for the assessment of tumor mitochondrial dysfunction by monitoring the respiratory activity[J]. Angew. Chem. Int. Ed., 2014, 126(46):12679-12683.

[62] STEINER M S, DUERKOP A, WOLFBEIS O S. Optical methods for sensing glucose[J]. Chem. Soc. Rev., 2011, 40(9):4805-4839.

[63] BORISOV S M, WOLFBEIS O S. Optical biosensors[J]. Chem. Rev., 2008, 108(2):423-461.

[64] PING J T, PENG H S, DUAN W B, et al.. Synthesis and optimization of ZnPc-loaded biocompatible nanoparticles for efficient photodynamic therapy[J]. J. Mater. Chem. B, 2016, 4(25):4482-4489.

彭洪尚, 申睿颖, 王小卉. 面向生物医学应用的光学氧气纳米传感器[J]. 发光学报, 2016, 37(10): 1167. PENG Hong-shang, SHEN Rui-ying, WANG Xiao-hui. Optical Oxygen Nanosensors Towards Biomedical Applications[J]. Chinese Journal of Luminescence, 2016, 37(10): 1167.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!