光学与光电技术, 2012, 10 (5): 38, 网络出版: 2012-12-05   

星载超光谱成像技术发展与展望

Developments of Spaceborne Hyperspectral Imaging Technique
作者单位
北京空间机电研究所, 北京 100076
摘要
超光谱成像技术由于能够同时获取目标的空间信息和光谱信息,显著提高了空间遥感技术对地物的探测和识别能力,在对地观测和深空探测领域具有广阔的应用前景。总结了星载超光谱成像技术近三十年来的国内外研究现状,对国内外典型超光谱成像仪的技术指标、技术特点和应用领域进行了论述。分析结果表明:高空间分辨率、高光谱分辨率是超光谱成像技术未来的发展趋势,offner光栅色散型超光谱成像仪是一个重要的发展方向。
Abstract
Hyperspectral imaging technique acquires spatial information and spectral information simultaneity, that improve objects detected and distinguished capability of space remote sensing techniques markedly. It has extensive applied foreground in the fields of ground observed and deep space explored. This paper summarizes the developments of hyperspectral imaging techniques in detail domestically and abroad for last 30 years, and explains the specification, technical characteristics and applied fields of typical hyperspectral imagers. The result indicates that high spatial resolution and high spectral resolution is a developed trend of hyperspectral imaging techniques, offner grating dispersive hyperspectral imager is an important developed direction.
参考文献

[1] Alexander F H Goetz, Gregg Vane Jerry E Solomon, Barrett N Rock. Imaging spectrometry for earth remote sensing[J]. Science, 1985, 228: 1147-1153.

[2] Ronald J Birk, Thomas B McCord. Airborne hyperspectral sensor systems[J]. IEEE AES Systems Magzine, 1994, 9(10): 26-33.

[3] 张军强, 吴清文, 颜昌翔. 星载成像光谱仪杂散光检测技术[J]. 中国光学与应用光学, 2010, 3(4): 337-342.

[4] James B Breckinridge. Evolution of imaging spectrometry: past, present and future[C]. SPIE, 1996, 2819: 2-6.

[5] Jeffery J Puschell. Hyperspectral imagers for current and future missions[C]. SPIE, 2000, 4041: 121-124.

[6] Alexander F H GOETZ, Mark Herring. The high resolution imaging spectrometer(HIRIS) for Eos[J]. IEEE, 1989, 27(2): 136-144.

[7] F Blechinger, D E Charlton, R Davancens. High resolution imaging spectrometer “HRIS” optics, focal plane and calibration[C]. SPIE, 1993, 1937: 207-224.

[8] B Harnisch, M Fabbricotti, R Meynart. HRIS technology development results and their implementation in future hyperspectral imagers[C]. SPIE, 1997, 3221: 396-411.

[9] Yves Delclaud, Jean-Yves Labandibar, Umberto Del Bello. Prism: hyperspectral spaceborne imager for land processes research[C]. SPIE, 1997, 2957: 144-153.

[10] Jean-Yves Labandibar, Yves Delcland, Umberto Del Bello. Prism: processes research by imaging space mission[C]. SPIE, 1996, 2817: 14-23.

[11] Roland Doerffer. ROSIS-an advanced imaging spectrometer for the monitoring of water colour and chlorophyll fluorescence[C]. SPIE, 1989, 1129: 117-121.

[12] Leonard John Otten III, Andrew D Meigs, et al. The engineering model for the MightySat II.1 hyperspectral imager[C]. SPIE, 1997, 3221: 412-420.

[13] L J Otten, A D Meigs. MightySat II.1: An optical design and performance update[C]. SPIE, 1996, 2957: 390-398.

[14] L J Otten, R G Sellar, J B Rafert. MightySat II.1 Fourier transform hyperspectral imager payload performance[C]. SPIE, 1995, 2583: 566-575.

[15] Michael Griffin, Hsiao-hua Burke, Dan Mandl. Cloud cover detection algorithm for EO-1 hyperion imagery[J]. IEEE, 2003, 1(1): 86-89.

[16] Fred A Kruse, Joseph W Boardman, Jonathan F Huntington. Comparison of airborne hyperspectral data and EO-1 hyperion for mineral mapping[J]. IEEE, 2003, 41(6): 1388-1400.

[17] Jay S Pearlman, Pamela S Barry, Carol C Segal. Hyperion, a space-based imaging spectrometer[J]. IEEE, 2003, 41(6): 1160-1173.

[18] Curtiss O Davis, Donald M Horan, Michael R corson. On-orbit calibration of the naval earth map observer(NEMO) coastal ocean imaging spectrometer(COIS)[C]. SPIE, 2000, 4132: 250.

[19] Thomas Wilson, Curtiss Davis. Naval earthmap observer(NEMO) satellite[C]. SPIE, 1999, 3753: 2-11.

[20] Thomas Wilson, Curtiss Davis. Hyperspectral remote sensing technology(HRST) program and the naval earthmap observer(NEMO) satellite[C]. SPIE, 1998, 3437: 2-10.

[21] Thomas Wilson, Curtiss Davis. Naval earthmap observer(NEMO) satellite[C]. SPIE, 1999, 3753: 2-11.

[22] Mike A Cutter. Compact high-resolution imaging spectrometer(CHRIS) design and performance[C]. SPIE, 2004, 5546: 126-131.

[23] Suhyb Salama, Jaak Monbaliu. Atmospheric correction algorithm for CHRIS images application to CASI[C]. SPIE, 2002, 4816: 120-131.

[24] Peter R Silverglate. System design of the CRISM(Compact Reconnaissance Imaging Spectrometer for Mars) hyperspectral imager[C]. SPIE, 2003, 5159: 283-290.

[25] Jens Nieke. Calibration methodology for the airborne dispersive pushbroom imaging spectrometer(APEX)[C]. SPIE, 2004, 5570: 445-452.

[26] Lawrence A Corp. Hyperspectral-lidar system and data product integration for terrestrial applications[C]. SPIE, 2009, 7457: 745705.

[27] Ryan Mackey. Getting diagnostic reasoning off the ground: maturing technology with TacSat-3[J]. IEEE, 2010, 25(5): 1541-1672.

[28] B Sang. The EnMAP hyperspectral imaging spectrometer: instrument concept, calibration and technologies[C]. SPIE, 2008, 7086: 708605.

[29] Thomas U Kampe. Advances in airborne remote sensing of ecosystem processes and properties-toward high-quality measurement on a global scale[C]. SPIE, 2010, 7809: 78090J.

[30] Andrew Rodger. A simple quadratic method of absorption feature wavelength estimation in continuum removed spectra[J]. Remote Sensing Environment,2012, 118: 273-283.

[31] William R Johnson. High speed, multi-channel, thermal instrument development in support of HyspIRI-TIR[C]. SPIE, 2011, 8155: 81550X.

[32] Thomas A Ellis. The NASA enhanced MODIS airborne simulator[C]. SPIE, 2011, 8153: 81530N.

李欢, 周峰. 星载超光谱成像技术发展与展望[J]. 光学与光电技术, 2012, 10(5): 38. LI Huan, ZHOU Feng. Developments of Spaceborne Hyperspectral Imaging Technique[J]. OPTICS & OPTOELECTRONIC TECHNOLOGY, 2012, 10(5): 38.

本文已被 5 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!