光子学报, 2012, 41 (10): 1167, 网络出版: 2012-11-07   

基于杂质光伏效应的镍掺杂对砷化镓太阳电池性能的影响

Influence of Nickel Impurity on the Performance of GaAs Solar Cells with Impurity Photovoltaic Effect
作者单位
1 南昌大学 理学院, 南昌 330031
2 毫米波国家重点实验室, 南京 210096
摘要
利用杂质光伏效应能够使太阳电池充分利用那些能量小于禁带宽度的太阳光子,从而提高电池的转换效率.为了更好地利用杂质光伏效应提高砷化镓太阳电池的转换效率, 本文利用数值方法研究在砷化镓太阳电池中掺入镍杂质以形成杂质光伏太阳电池, 分析掺镍对电池的短路电流密度、开路电压以及转换效率的影响; 同时, 探讨电池的陷光结构对杂质光伏太阳电池器件性能的影响.结果表明:利用杂质光伏效应掺入镍杂质能够增加子带光子的吸收, 使得电池转换效率提高3.32%; 转换效率的提高在于杂质光伏效应使电池的红外光谱响应得到扩展; 另外, 拥有良好的陷光结构是取得好的杂质光伏效应的关键.由此得出:在砷化镓太阳电池中掺镍形成杂质光伏太阳电池是一种能够提高砷化镓太阳电池转换效率的新方法.
Abstract
The solar cell with impurity photovoltaic effect can make use of the solar photons with energies less than the bandgap so that its conversion efficiency could be improved. To improve the conversion efficiency of the GaAs solar cells by using impurity photovoltaic effect, the GaAs solar cells doped with nickel for impurity photovoltaic effect were investigated by numerical method. The influence of nickel-doping on the short-circuit current density, open-circuit voltage and conversion efficiency was investigated. The effect of trapping structure on the cell performance was discussed. The results show that an increase of the conversion efficiency 3.32% can be achieved due to the impurity photovoltaic effect. The improvement of the solar cell performance attributes to the absorption of some sub-band photons, which results in the extension of the infrared response. Moreover, a good light trapping should be required to obtain better device performance for solar cells with impurity photovoltaic effect. It can be concluded that nickel doping in GaAs solar cells with impurity photovoltaic effect is a promising way for higher efficiency.
参考文献

[1] 张帆, 李林, 王勇, 等. GaAs半导体激光器线宽展宽因子的理论计算[J]. 光子学报, 2011, 40(4): 521-525.

    ZHANG Fan, LI Lin, WANG Yong, et al. Theoretical calculation of linewidth enhancement factor in GaAs semiconductor lasers[J]. Acta Photonica Sinica, 2011, 40(4): 521-525.

[2] 陈亮, 钱芸生, 常本康, 等. 发射层厚度对透射式GaAs光电阴极表面光电压谱的影响[J]. 光子学报, 2011, 40(7): 1008-1012.

    CHEN Liang, QIAN Yun-sheng, CHANG Ben-kang. Reflection on surface photovoltage spectroscopy for transmission-mode GaAs photocathodes of different active layer thickness[J]. Acta Photonica Sinica, 2011, 40(7): 1008-1012.

[3] 李娟, 孙文军, 孙京南, 等. 连续激光辐照GaAs材料损伤的数值模拟计算[J]. 光子学报, 2012, 41(5): 571-574.

    LI Juan, SUN Wen-jun, SUN Jing-nan, et al. Numerical analysis of CW laser damage in GaAs[J]. Acta Photonica Sinica, 2012, 41(5): 571-574.

[4] KEEVERS M J, GREEN M A. Efficiency improvements of silicon solar cells by the impurity photovoltaic effect[J]. Journal of Applied Physics, 1994, 75(8): 4022-4031.

[5] SCHMEITS M, MANI A A. Impurity photovoltaic effect in c-Si solar cells. A numerical study[J]. Journal of Applied Physics, 1999, 85(4): 2207-2212.

[6] KHELIFI S, VERSCHRAEGEN J, BURGELMAN M, et al. Numerical simulation of the impurity photovoltaic effect in silicon solar cells[J]. Renewable Energy, 2008, 33(2): 293-298.

[7] SAHOO H S, YADAV A K, RAY A. Simulation of IPV effect in In-doped c-Si with optimized indium concentration and layer thickness[J]. Physica B, 2011, 406(22): 4221-4226.

[8] AZZOUZI G, CHEGAAR M. Impurity photovoltaic effect in silicon solar cell doped with sulphur: A numerical simulation [J]. Physica B, 2011, 406(9): 1773-1777.

[9] YUAN Ji-ren, SHEN Hong-lie, HUANG Hai-bin, et al. Positive or negative gain: Role of thermal capture cross sections in impurity photovoltaic effect[J]. Journal of Applied Physics, 2011, 110(10): 104508.

[10] YUAN Ji-ren, SHEN Hong-lie, ZHONG Fu-lian, et al. Impurity photovoltaic effect in magnesium-doped silicon solar cells with two energy levels[J]. Physica Status Solidi A, 2012, 209(5): 1002-1006.

[11] BEAUCARNE G, BROWN A S, KEEVERS M J, et al. The impurity photovoltaic (IPV) effect in wide-bandgap semiconductors: an opportunity for very-high-efficiency solar cells [J] Progress in Photovoltaics: Research and Application, 2002, 10(5): 345-353.

[12] SZE S M, NG K K. Physics of semiconductor devices[M]. 3rd ed. New York: Wiley, 2007.

[13] SHOCKLEY W, READ W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842.

[14] HALL R N. Electron-hole recombination in germanium[J]. Physical Review, 1952, 87(2): 387.

[15] MILNES A G. Deep impurities in semiconductors[M]. New York: Wiley, 1973.

[16] GRIMMEISS H G. Deep level impurities in semiconductors[J]. Annual Review of Materials Science, 1977, 7: 341-376.

[17] LUCOVSKY G. On the photoionization of deep impurity centers in semiconductors[J]. Solid State Communications, 1965, 3(9): 299-302.

袁吉仁, 洪文钦, 邓新华, 余启名. 基于杂质光伏效应的镍掺杂对砷化镓太阳电池性能的影响[J]. 光子学报, 2012, 41(10): 1167. YUAN Ji-ren, HONG Wen-qin, DENG Xin-hua, YU Qi-ming. Influence of Nickel Impurity on the Performance of GaAs Solar Cells with Impurity Photovoltaic Effect[J]. ACTA PHOTONICA SINICA, 2012, 41(10): 1167.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!