激光与光电子学进展, 2017, 54 (12): 120101, 网络出版: 2017-12-11  

一维最大概率法反演夜光云散射系数廓线的研究

Inversion of the Scattering Coefficient of Polar Mesospheric Clouds by Using One-Dimensional Maximum Probability Method
郜海阳 1,2,*卜令兵 1,2王震 1,2朱红 3
作者单位
1 南京信息工程大学中国气象局气溶胶与云降水重点开放实验室, 江苏 南京 210044
2 南京信息工程大学大气物理学院, 江苏 南京 210044
3 南京信息工程大学大气科学学院, 江苏 南京 210044
摘要
介绍了最大概率法的数学原理及迭代方程的使用过程, 以卫星遥感观测的夜光云数据为例, 阐述了最大概率法在实例中的使用方法, 并反演得到了夜光云体散射比廓线及散射系数廓线。与传统洋葱剥皮法的反演结果进行对比, 结果表明:最大概率法的结果几乎没有失真现象, 但洋葱剥皮法得到的散射比存在严重的失真现象。其根本原因在于传统方法假设夜光云体散射强度值在大气层结中为均匀分布, 而最大概率法则假设体散射强度值在层结中可以在一定的变化范围内呈现不均匀的分布, 后者的假设更符合夜光云这类短时间内可能会出现大幅值空间分布变化的自然现象。
Abstract
Both the mathematical principle of the maximum probability (MP) method and the process of iterative equations are introduced. Then we use the real satellite data as an example to demonstrate the calculation of MP method and obtain the volume scattering ratio profiles and scattering coefficient profiles of polar mesospheric clouds (PMCs). We compare the inversion results of the MP method with those of the traditional onion peeling (OP) method, and find that the former hardly have any distortion, while the latter show serious distortion. The fundamental reason for this difference is that the OP method assumes that the volume scattering intensity has a uniform distribution in the same atmospheric layer, while the MP method assumes that the volume scattering intensity can exhibit a non-uniform distribution within a certain varied range of the layer. This assumption of MP method is more suitable for the natural characteristics of PMCs, because the spatial distribution of PMCs often changes greatly in a short time.
参考文献

[1] Gadsden M, Schroder W. Noctilucent clouds[M]. Berlin: Springer-Verlag Press, 1989: 279-340.

[2] Liu X, Yue J, Xu J, et al. Five-day waves in polar stratosphere and mesosphere temperature and mesospheric ice water measured by SOFIE/AIM[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(9): 3872-3887.

[3] Gadsden M. The north-west Europe data on noctilucent clouds: A survey[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 1998, 60(12): 1163-1174.

[4] Thomas G E, Olivero J J, Jensen E J, et al. Relation between increasing methane and the presence of ice clouds at the mesopause[J]. Nature, 1989, 338(6215): 490-492.

[5] Thomas G E. Are noctilucent clouds harbingers of global change in the middle atmosphere [J]. Advances in Space Research, 2003, 32(9): 1737-1746.

[6] Deland M T, Shettle E P, Thomas G E, et al. A quarter-century of satellite polar mesospheric cloud observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(1): 9-29.

[7] Lubken F J, Berger U. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends[J]. Journal of Geophysical Research: Atmospheres, 2011, 116(D4): D00P03.

[8] Russell J M, Bailey S M, Gordley L L, et al. The Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(3): 289-299.

[9] 郜海阳, 张祖熠, 卜令兵, 等. 小尺度重力波引起夜光云反照率变化的统计特征[J]. 空间科学学报, 2017, 37(1): 82-93.

    Gao Haiyang, Zhang Zuyi, Bu Lingbing, et al. Statistical characteristics of albedo variation in noctilucent clouds induced by small-scale gravity waves[J]. Chinese Journal of Space Science, 2017, 37(1): 82-93.

[10] 卜令兵, 张祖熠, 郜海阳, 等. 夜光云内小尺度重力波对冰晶粒径谱的影响规律研究[J]. 地球物理学报, 2016, 59(2): 453-464.

    Bu Lingbing, Zhang Zuyi, Gao Haiyang, et al. Characteristics of perturbations induced by small-scale gravity waves on ice particle size distribution of noctilucent clouds[J]. Chinese Journal of Geophysics-Chinese Edition, 2016, 59(2): 453-464.

[11] Gao H, Shepherd G G, Tang Y, et al. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM[J]. Annales Geophysicae, 2017, 35(2): 295-309.

[12] Solomon S C, Hays P B, Abreu V J. Tomographic inversion of satellite photometry[J]. Applied Optics, 1984, 23(19): 3409-3414.

[13] Yee E, Paulson K V, Shepherd G G. Minimum cross-entropy inversion of satellite photometer data[J]. Applied Optics, 1987, 26(11): 2106-2110.

[14] McDade I C, Lloyd N D, Llewellyn E J. A rocket tomography measurement of the N+2 3914  emission rates within an auroral arc[J]. Planetary & Space Science, 1991, 39(6): 895-906.

[15] McDade I C, Llewellyn E J. Inversion techniques for recovering two-dimensional distributions of auroral emission rates from tomographic rocket photometer measurements[J]. Canadian Journal of Physics, 1991, 69(8/9): 1059-1068.

[16] Frey S, Mende S B, Frey H U. Satellite limb tomography applied to airglow of the 630 nm emission[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A10): 21367-21380.

[17] Hultgren K, Gumbel J, Degenstein D, et al. First simultaneous retrievals of horizontal and vertical structures of polar mesospheric clouds from Odin/OSIRIS tomography[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 104(2): 213-223.

[18] Hultgren K, Gumbel J. Tomographic and spectral views on the lifecycle of polar mesospheric clouds from Odin/OSIRIS[J]. Journal of Geophysical Research Atmospheres, 2014, 119(24): 14129-14143.

[19] Lloyd N D, Llewellyn E J. Deconvolution of blurred images using photon counting statistics and maximum probability[J]. Canadian Journal of Physics, 1989, 67(1): 89-94.

[20] Hervig M E, Gordley L L, Stevens M H, et al. Interpretation of SOFIE PMC measurements: Cloud identification and derivation of mass density, particle shape, and particle size[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(3): 316-330.

[21] Deland M T, Thomas G E. Updated PMC trends derived from SBUV data[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(5): 2140-2166.

[22] Shepherd G G, Thuillier G, Gault W A, et al. WINDII, the wind imaging interferometer on the upper atmosphere research satellite[J]. Journal of Geophysical Research: Atmospheres, 1993, 98(D6): 10725-10750.

[23] Evans W F J, Laframboise L R, Sine K R, et al. Observation of polar mesospheric clouds in summer, 1993 by the WINDII Instrument on UARS[J]. Geophysical Research Letters, 2013, 22(20): 2793-2796.

[24] Wiens R H, Evans W F J, Zalcik M S, et al. WINDII observation of a PMC breakup event during ANLC-93[J]. Geophysical Research Letters, 1995, 22(20): 2797-2800.

[25] Shepherd G G, Thuillier G, Cho Y M, et al. The wind imaging interferometer (WINDII) on the upper atmosphere research satellite: A 20 year perspective[J]. Reviews of Geophysics, 2012, 50(2): RG2007.

[26] Rochon Y J. The retrieval of winds, Doppler temperatures, and emission rates for the WINDII experiment[D]. Toronto: York University, 2001: 36-45.

[27] Vergados P, Shepherd M G. Retrieving mesospheric water vapour from observations of volume scattering radiances[J]. Annales Geophysicae: Atmospheres, Hydrospheres and Space Sciences, 2009, 27(2): 487-501.

[28] Collis R T H, Russell P B. Lidar measurement of particles and gases by elastic backscattering and differential absorption[M]. Berlin: Springer-Verlag Press, 1976: 89-90.

[29] Russell J M, Rong P, Bailey S M, et al. Relationship between the summer mesopause and polar mesospheric cloud heights[J]. Journal of Geophysical Research: Atmospheres, 2010, 115(D16): D16209.

郜海阳, 卜令兵, 王震, 朱红. 一维最大概率法反演夜光云散射系数廓线的研究[J]. 激光与光电子学进展, 2017, 54(12): 120101. Gao Haiyang, Bu Lingbing, Wang Zhen, Zhu Hong. Inversion of the Scattering Coefficient of Polar Mesospheric Clouds by Using One-Dimensional Maximum Probability Method[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120101.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!