光通信研究, 2019 (5): 1, 网络出版: 2019-12-05  

6G移动通信关键技术趋势初探(特邀)

Preliminary Study on the Key Technologies of 6G Mobile Communication
陈亮 1,2余少华 1,2,3,*
作者单位
1 中国信息通信科技集团有限公司, 武汉 430074
2 光纤通信技术和网络国家重点实验室, 武汉 430074
3 国家信息光电子创新中心, 武汉 430074
摘要
文章根据第六代移动通信系统(6G)的总愿景和不同维度子愿景, 分类阐述了有可能实现这些美好愿景的关键技术趋势和挑战。文章从新晶体复合材料、超材料、非正交波形、高频毫米波和太赫兹生成等物理基础性技术, 到无线新型互联网基础设施和深海通信网络等网络基础性技术, 再到人工智能使能、感知互联和人体通信等新兴应用技术, 分门别类地介绍了6G时代充满机遇和挑战的某些候选关键技术。文章引用了部分国际顶级学术期刊的相关内容和研究成果, 期望观点尽可能严谨合理, 并引起业界对6G移动通信发展趋势的关注。
Abstract
Based on the overall vision of the Sixth Generation Mobile Communications (6G) and the different dimensions of the sub-vision, the article outlines key technology trends and challenges that are likely to achieve these wonderful visions. This article is based on new basic technologies such as new composites, meta-materials, non-orthogonal waveforms, high-frequency millimeter and terahertz waves generation, to network-based technologies such as wireless new Internet infrastructure and deep-sea communication networks. Emerging application technologies such as perceptual interconnection and human body communication are introduced in different categories to select key technologies that are full of opportunities and challenges in the 6G era. This article cites the relevant content and research results of some of the top international academic journals, and strives to be as rigorous and reasonable as possible, with a view to attracting industry attention to the development trend of 6G mobile communications.
参考文献

[1] 陈亮, 余少华. 6G移动通信发展趋势初探[J]. 光通信研究, 2019(4): 1-8.

[2] 陈亮, 余少华. 5G端到端应用场景的评估和预测[J]. 光通信研究, 2019(3): 1-7.

[3] Sarycheva A, Polemi A, Liu Y, et al. 2D Titanium Carbide (MXene) for Wireless Communication[J]. Science Advances, 2018, 4(9): 0920.

[4] Gu Z, Pandya S, Samanta A, et al. Resonant Domain-Wall-Enhanced Tunable Microwave Ferroelectrics[J]. Nature, 2018, 560: 622-627.

[5] Han W, Kim T, Yoo B, et al. Tunable Dielectric Properties of Poly (Vinylidenefluoride-Co-Hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles[J]. Nature Scientific Reports, 2018, 8(1):4086.

[6] Pelc D, Anderson Z, Yu B, et al. Universal Superconducting Precursor in Three Classes of Unconventional Superconductors[J]. Nature Communications, 2019, 10: 2729.

[7] Abel S, Eltes F, Ortmann E J, et al. Large Pockels Effect in Micro- and Nanostructured Barium Titanate Integrated on Silicon[J]. Nature Materials, 2019, 18: 42-47.

[8] Zhang L, Chen X Q, Liu S, et al. Space-Time-Coding Digital Metasurfaces[J]. Nature Communications, 2018, 9: 4334.

[9] Boroujeny B F. Filter Bank Multicarrier Modulation: A Waveform Candidate for 5G and Beyond[J]. Advances in Eletrical Engineering, 2014,2014:482805.

[10] Sahin A , Guvenc I , Arslan H . A Survey on Multicarrier Communications: Prototype Filters, Lattice Structures, and Implementation Aspects[J]. IEEE Communications Surveys & Tutorials, 2014, 16(3):1312-1338.

[11] Ankarali Z , Pekoz B , Arslan H . Flexible Radio Access Beyond 5G: A Future Projection on Waveform, Numerology & Frame Design Principles[J]. IEEE Access, 2017, 5:18295-18309.

[12] 陈亮, 杨奇. 5G网络中无线频谱资源分配的进展分析[J]. 光通信研究, 2016(6):68-71.

[13] Wang Q, Pirro P, Verba R, et al. Reconfigurable Nanoscale Spin-Wave Directional Coupler[J]. Science Advances, 2018, 4(1):e1701517.

[14] Alavi S E, Soltanian M R K, Amiri I S, et al. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul[J]. Nature Scientific Reports, 2016, 6: 19891.

[15] Elayan H, Amin O, Shubair R M, et al. Terahertz Communication: The Opportunities of Wireless Technology beyond 5G[C]//2018 International Conference on Advanced Communication Technologies and Networking (CommNet). Marrakech, Morocco:IEEE, 2018: 17767479.

[16] Ummethala S, Harter T, Koehnle K, et al. THz-to-Optical Conversion in Wireless Communications Using an Ultra-Broadband Plasmonic Modulator[J]. Nature Photonics,2019,13: 519-524.

[17] Sengupta K, Nagatsuma T, Mittleman D M. Terahertz Integrated Electronic and Hybrid Electronic-Photonic Systems[J]. Nature Electronics, 2018,1(2018):622-635.

[18] Wu T , Rappaport T S , Collins C M . Safe for Generations to Come: Considerations of Safety for Millimeter Waves in Wireless Communications[J]. IEEE Microwave Magazine, 2015, 16(2):65-84.

[19] Wu T, Rappaport T S, Collins C M. The Human Body and Millimeter-Wave Wireless Communication Systems: Interactions and Implications[C]// IEEE International Conference on Communications. London, UK:IEEE, 2015: 7248688.

[20] Barrera D , Chuat L , Perrig A , et al. The SCION Internet Architecture[J]. Communications of the ACM, 2017, 60(6):56-65.

[21] Wehner S,Elkouss D,Hanson R.Quantum Internet:A Vision for The Road Ahead[J].Science,2018,362(6412):303-312.

[22] Tsai W S, Lu H H, Wu H W, et al. A 30 Gbit/s PAM4 Underwater Wireless Laser Transmission System with Optical Beam Reducer/Expander[J]. Nature Scientific Reports, 2019, 9: 8605.

[23] Nawaz S J, Sharma S K, Wyne S, et al. Quantum Machine Learning for 6G Communication Networks: State-of-the-Art and Vision for the Future[J]. IEEE Access, 2019,7: 46317-46350.

[24] O'Shea T J , Hoydis J . An Introduction to Deep Learning for the Physical Layer[J]. IEEE Transactions on Cognitive Communications & Networking, 2017, 3(4):563-575.

[25] Zhao C, Shen Z J, Zhou G Y. Neuromorphic Properties of Memristor towards Artificial Intelligence[C]//2018 International SoC Design Conference (ISOCC). Daegu,Korea (South):IEEE,2018: 172-173.

[26] Zhao C, Zhou G Y, Zhao C Z. Memristor-based Neuromorphic Implementations for Artificial Neural Networks[C]//2018 International SoC Design Conference (ISOCC). Daegu,Korea (South):IEEE, 2018: 174 -175.

[27] Mokhtar S M A B, Abdullah W F H . Memristor-CMOS Interfacing Circuit SPICE Model[C]// Computer Applications & Industrial Electronics. Langkawi, Malaysia: IEEE, 2015: 7298345.

[28] Simsek M, Aijaz A, Dohler M, et al. 5G-Enabled Tactile Internet[J]. IEEE Journal on Selected Areas in Communications, 2016:460-473.

[29] Gao Z D, Su J B, Zhou W. Robot Autonomous Perception Model for Internet-Based Intelligent Robotic System[C]// International Conference on Machine Learning & Cybernetics. Guangzhou, China: IEEE, 2005: 1526921.

[30] Yilmaz G N. Depth Perception Prediction of 3D Video QoE for Future Internet Services[C]// 2018 International Conference on Information Networking (ICOIN). Chiang Mai, Thailand:IEEE, 2018: 146-149.

[31] Farserotu J, Decotignie J D, Baborowski J, et al. Tactile Prosthetics in WiseSkin[C]// Design, Automation and Test in Europe. Grenoble, France: IEEE, 2015: 1153.

[32] 陈亮. 基于小数据的5G资源云化技术的研究[J],光通信研究,2017(6): 71-75.

陈亮, 余少华. 6G移动通信关键技术趋势初探(特邀)[J]. 光通信研究, 2019, 45(5): 1. CHEN Liang, YU Shao-hua. Preliminary Study on the Key Technologies of 6G Mobile Communication[J]. Study On Optical Communications, 2019, 45(5): 1.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!