液晶与显示, 2017, 32 (6): 461, 网络出版: 2017-06-27   

共轭分子自身结构转变对结晶形貌及电学性能的影响

Effects of molecular topological transformation on crystallization and electric properties
作者单位
北京交通大学 理学院 光电子技术研究所, 北京 100044
摘要
在共轭光电材料的应用中, 材料的溶解度决定着其加工性能, 而分子规则的自组装排列对于其在固态中的结晶性起着重要作用。然而如何保证材料同时具有高的溶解度和结晶性是目前共轭有机半导体研究的一个难点。本工作选择两个相似共轭分子进行研究, 其中: 一个是平面结构, 另一个是扭曲结构。结果发现扭曲结构分子不仅溶解度比平面结构分子大, 而且在固态状态下, 会自发转变成平面结构获得更好的结晶性。进一步研究分子薄膜器件的微纳结构对电学性能的影响。结果表明扭曲分子的场效应晶体管性能优于平面分子, 迁移率达到6.73×10-3 cm2/V·s, 比平面分子薄膜的迁移率高出一个数量级。本文揭示分子结构、聚集态结构与电学性能之间的关系, 为未来设计合成高效共轭分子提供了新思路。
Abstract
Organic semiconductors have received much attention from both industry and academia, due to their potential opto-electronic applications. Solution-process ability is one of their most attractive features. The other component of an organic semiconductor material’s molecular structure is its π-conjugated backbone, which plays an important role in determining the extent of π-π stacking and charge mobility. In our work, two conjugated molecules were selected to understand how molecular shape impacts the crystallization tendencies of molecular semiconductors. One (DT) is a highly torsional molecule, and the other molecule (CDT) uses a carbon “bridge” to lock the conjugated backbone into a planar conformation. The twisted molecule (DT) is more soluble in the solution. Interestingly, the twisted molecule (DT) exhibits a greater degree of crystallization and higher charge mobility properties in the solid state than the planar CDT molecule. The mobility of DT film is up to 673x10-3 cm2/V·s, which is over one order of magnitude. These findings are relevant within the context of selecting and designing semiconductors that exhibit high solubility and a tendency to provide stable organized structures with desirable electronic properties.
参考文献

[1] TANG C W, VANSLYKE S A. Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51 (12): 913-915.

[2] YU G, GAO J, HUMMELEN J C, et al. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995, 270: 1789-1791.

[3] PRON A, RANNOU P, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors [J]. Prog. Polym. Sci., 2002, 27 (1) 135-190.

[4] LANGE U, ROZNYATOVSKAYA N V, MIRSKY V M, Conducting polymers in chemical sensors and arrays [J]. Anal. Chim. Acta, 2008, 614 (1): 1-26.

[5] ZAUMSEIL J, SIRRINGHAUS H, Electron and ambipolar transport in organic field-effect transistors [J]. Chem. Rev., 2007, 107 (4): 1296-1323.

[6] CRONE B, DODABALAPUR A, LIN Y Y, et al. Large-scale complementary integrated circuits based on organic transistors [J]. Nature, 2000, 403 (6796): 521-523.

[7] ZHANG G, ZHANG K, YIN Q, et al. High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor [J]. J. Am. Chem. Soc., 2017, 139 (6): 2387-2395.

[8] SUNY, WELCH G C, LEONG W L, et al. Solution-processed small-molecule solar cells with 6.7% efficiency [J]. Nat Mater, 2012, 11 (1): 44-48.

[9] LIU F, ZHAO W, TUMBLESTON J R, et al. Understanding the morphology of PTB7: PCBM blends in organic photovoltaics [J]. Adv. Energy Mater., 2014, 4 (5): 1301377.

[10] DONG H, JIANG S, JIANG L, et al. Nanowire crystals of a rigid rod conjugated polymer [J]. J. Am. Chem. Soc., 2009, 131 (47) 17315-17320.

[11] BRISENO A L, MANNSFELD S C B, REESE C, et al. Perylenediimide nanowires and their use in fabricating field-effect transistors and complementary inverters [J]. Nano Lett., 2007, 7 (9): 2847-2853.

[12] STREET R A, MULATO M, LAU R, et al. Image capture array with an organic light sensor [J]. Appl. Phys. Lett., 2001, 78: (26) 4193-4195.

[13] KNOPFMACHER O, HAMMOCK M L, APPLETON A L, et al. Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment [J]. Nature Commun., 2014 5: 2954.

[14] JEON N J, LEE H G, KIM Y C, et al. o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells [J]. J. Am. Chem. Soc., 2014, 136 (22): 7837-7840.

[15] ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells [J]. Science, 2014, 345 (6196): 542-546.

[16] SCHMIDT-MENDE L, BACH U, HUMPHRY-BAKER R, et al. Organic dye for highly efficient solid-state dye-sensitized solar cells [J]. Adv. Mater., 2005, 17 (7): 813-815.

[17] CALI L, KAZIM S, GRTZEL M, et al. Hole-transport materials for perovskite solar cells [J]. Angew. Chem. Int. Edit, 2016, 55 (47): 14522-14545.

[18] HUANG Y, WEN W, MUKHERJEE S, et al. High-molecular-weight insulating polymers can improve the performance of molecular solar cells [J]. Adv. Mater., 2014, 26 (24): 4168-4172.

[19] SNDERGAARD R. HSEL M, ANGMO D, et al. Roll-to-roll fabrication of polymer solar cells [J]. Mater. Today, 2012, 15 (1-2): 36-49.

[20] KREBS F C, TROMHOLT T, JORGENSEN M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing [J]. Nanoscale, 2010, 2 (6): 873-886.

[21] HOTH C N, CHOULIS S A, SCHILINSKY P, et al. High photovoltaic performance of inkjet printed polymer: fullerene blends [J]. Adv. Mater., 2007, 19 (22): 3973-3978.

[22] LIU Y, ZHAO J, LI Z, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells [J]. Nat. Commun., 2014, 5: 5293.

[23] LIN Y, HE Q, ZHAO F, et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency [J]. J. Am. Chem. Soc., 2016 138 (9): 2973-2976.

[24] LAIL F, LOVE J A, SHARENKO A, et al. Topological considerations for the design of molecular donors with multiple absorbing units [J]. J. Am. Chem. Soc., 2014, 136 (15): 5591-5594.

[25] SAGARA Y, KATO T. Mechanically induced luminescence changes in molecular assemblies [J]. Nat. Chem., 2009, 1 (8): 605-610.

[26] WANG L, YE K Q, ZHANG H Y. Organic materials with hydrostatic pressure induced mechanochromic properties[J]. Chin. Chem. Lett., 2016, 27 (8): 1367-1375.

崔秋红, 侯延冰. 共轭分子自身结构转变对结晶形貌及电学性能的影响[J]. 液晶与显示, 2017, 32(6): 461. CUI Qiu-hong, HOU Yan-bing. Effects of molecular topological transformation on crystallization and electric properties[J]. Chinese Journal of Liquid Crystals and Displays, 2017, 32(6): 461.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!