中国激光, 2013, 40 (5): 0503009, 网络出版: 2013-04-28   

铝合金T型接头双侧激光同步焊接组织的特征及力学性能

Microstructure Characteristics and Mechanical Properties of Double-Sided Laser Beam Welded Aluminum Alloy T-Joints
作者单位
1 哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
2 哈尔滨工业大学金属精密热加工国防科技重点实验室, 黑龙江 哈尔滨 150001
3 国家商用飞机制造工程技术研究中心, 上海 200436
摘要
针对国产大型客机机身壁板双侧激光同步焊接的铝合金T型接头,系统研究了接头组织特征及力学性能。试验结果表明:从焊缝中心到母材依次存在等轴晶区、柱状晶区、部分熔化区、过热区和母材区5个特征区域,蒙皮侧热影响区是接头最薄弱环节;接头拉伸强度取决于焊缝熔深,平均横向与轴向拉伸强度分别为母材的87.8%和53.1%,试件均起裂于蒙皮焊趾处,断口分别表现为韧性断裂和脆性断裂;平均纵向拉伸强度为母材的90.8%,平均延伸率约为8.4%,断口韧窝小而浅,呈现出韧性与脆性混合断裂特征,熔合线附近焊缝存在撕裂痕迹;疲劳失效首先发生于蒙皮焊趾处并最终断裂于蒙皮,条件疲劳强度约为80.7 MPa;焊趾处断口表现出韧性和脆性混合断裂特征,蒙皮位置呈现脆性断裂特征。
Abstract
The microstructure characteristics and mechanical properties of double-sided laser beam welded aluminum alloy T-joints for aircraft fuselage panels are systematically analyed. The experimental results show that five distinct zones are identified between the fusion zone center and the base material which consists cellular dendrite zone, parallel dendrite zone, partially melted zone, over-aged zone, and base material. The heat affected zone of the skin side is the weakest area. The tensile strength depends on the weld penetration, and the failure originates at the weld toe on the skin side. The average transverse and axial tensile strengths reach 87.8% and 53.1% of the base materials and the fracture mechanisms of the transverse and axial tensile tests are found to be ductile and brittle fracture, respectively. The average longitudinal tensile strength reaches 90.8% of the base materials, and the average elongation is 8.4% of the original test specimens. The dimples are small and shallow, the fracture is a mixture of ductile and brittle fracture, and a tearing trace near the fusion line appears. Fatigue failure is found to originate at the weld toe on the skin side and finally crack on the skin, and the conditioned fatigue strength is 80.7 MPa. The fracture at the weld toe is a mixture of ductile and brittle fracture, and the skin panel fracture appears brittle fracture feature.
参考文献

[1] G. Neye, P. Heider. Laser beam welding of modern Al-alloy for the aircraft industry[C]. Proc. Conf. ECLAT'94/Dusseldorf: Deutscher Verband für Schweiβtechnik, 1994. 108~117

[2] P. Heider. Lasergerechte Konstruktion Und Lasergerechte Fertigungsmittel Zum Schweissengrossformatiger Aluminium-Strukturbauteile[D]. Deutsch: Bremer Institut für Angewandte Strahltechnik, 1994

[3] P. F. Mendez, T. W. Eagar. Welding process for aeronautics[J]. Advanced Materials & Processes, 2001, 159(5): 39~43

[4] D. Dttrich, J. Standfuss, L. Liebscher et al.. Laser beam welding of hard to weld Al alloys for a regional aircraft fuselage design-first results[J]. Phys. Procedia, 2011, 12(1): 113~22

[5] G. Neye. Laserstrahlschweiβkonzept für Rumpfschalen-Strukturen[M]. Strahltechnik, Band 5, Bremen, Bias-Verlag, 1997

[6] G. Tempus. New aluminum alloys and fuselage structures in aircraft design[C]. Switzerland: Werkstoffe für Transport und Verkehr, ETH Zürich, 2001

[7] W. Zink. Welding fuselage shells[J]. Industrial Laser Solutions for Manufacturing, 2001, 16(4): 7~10

[8] B. Brenner, J. Standfuβ, L. Morgenthal et al.. New technological aspects of laser beam welding of aircraft structures[C]. Düsseldorf: DVS, 2004

[9] O. Gedrat, G. Kuck, A. Kolley et al.. Verfahren zum schweissen von profilen auf grossformatigen aluminium-strukturbauteilen mittels laserstrahlen und vorrichtung zur durchführung des verfahrens[P]. European Patent: Patent Number EP0838301B1, 1997

[10] B. Brenner. Laser beam welding of aircraft fuselage structures[C]. Proc. ICALEO, 2008. 838~845

[11] A. Squillace, U. Prisco. Influence of filler material on micro-and macro-mechanical behavior of laser-beam-welded T-joint for aerospace applications[J]. J. Mater. Des. Appl., 2009, 223(3): 103~115

[12] J. Schumacher, I. Zerner, G. Neye et al.. Laser beam welding of aircraft fuselage panels[C]. Scottsdale: Proc. ICALEO, 2002

[13] J. R. Davis. Aluminum and Aluminum Alloys[M]. ASM Specialty Handbook. 5th ed. USA: Materials Park OH, 1993: 376~389

[14] 张新戈, 李俐群, 陈彦宾 等. 铝合金激光电阻复合焊接特性研究[J]. 中国激光, 2010, 37(5): 1404~1408

    Zhang Xin′ge, Li Liqun, Chen Yanbin et al.. Study on characteristics of laser-resistance hybrid welding for aluminum alloy[J]. Chinese J. Lasers, 2010, 37(5): 1404~1408

[15] 陈洁, 杨志斌, 占小红 等. 铝合金T型接头激光双侧填丝焊接工艺研究[J]. 应用激光, 2011, 31(2): 130~134

    Chen Jie, Yang Zhibin, Zhan Xiaohong et al.. Experimental properties study on both-side laser beam welding of T-joint aluminum alloy[J]. Applied laser, 2011, 31(2): 130~134

[16] 杨涛. 高强铝合金T型接头激光焊接技术研究 [D]. 武汉: 武汉理工大学, 2011. 60~61

    Yang Tao. Research on Laser Welding of High Strength Aluminum in T-joint[D]. Wuhan: Wuhan University of Technology, 2011. 60~61

[17] 许良红, 田志凌, 彭云 等. 高强铝合金的激光焊接头组织及力学性能[J]. 中国激光, 2008, 35(3): 456~461

    Xu Lianghong, Tian Zhiling, Peng Yun et al.. Microstructure and mechanical properties of high strength aluminum alloy laser welds[J]. Chinese J. Lasers, 2008, 35(3): 456~461

[18] N. Q. Wu, C. Xia, M. Li et al.. Interfacial structure and micro and nano-mechanical behavior of laser-welded 6061 aluminum alloy blank[J]. Trans. ASME, J. Eng. Mater. Technol., 2004, 126(1): 8~13

[19] 梅丽芳, 陈根余, 金湘中 等. 车用铝合金光纤激光搭接焊的研究[J]. 中国激光, 2010, 37(8): 2091~2097

    Mei Lifang, Chen Genyu, Jin Xiangzhong et al.. Study on fiber laser overlap welding of automobile aluminum alloy[J]. Chinese J. Lasers, 2010, 37(8): 2091~2097

陈彦宾, 杨志斌, 陶汪, 陈洁, 李俐群, 刘申, 陈磊. 铝合金T型接头双侧激光同步焊接组织的特征及力学性能[J]. 中国激光, 2013, 40(5): 0503009. Chen Yanbin, Yang Zhibin, Tao Wang, Chen Jie, Li Liqun, Liu Shen, Chen Lei. Microstructure Characteristics and Mechanical Properties of Double-Sided Laser Beam Welded Aluminum Alloy T-Joints[J]. Chinese Journal of Lasers, 2013, 40(5): 0503009.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!