红外与激光工程, 2015, 44 (3): 1034, 网络出版: 2016-01-26   

基于近场光学理论光镊的研究进展

Optical tweezers based on near-field optical theory
作者单位
1 中北大学仪器科学与动态测试教育部重点实验室,山西 太原 030051
2 中北大学仪器与电子学院,山西 太原 030051
3 电子测试技术国家重点实验室,山西 太原 030051
摘要
近场光镊是基于近场光学理论建立起来的可以对微粒实现稳定捕获和操作的新技术,相较基于单光束梯度力的传统远场光镊,近场光镊克服了光学分辨率衍射极限和热效应等众多因素的限制,可以实现对纳米量级微小粒子的捕获和操控,在物理学、细胞工程、生物医学等领域备受关注。首先阐述了基于倏逝场近场光镊的模型和捕获的基本原理,详述了棱镜全反射光镊、探针型光镊、纳米孔径光镊、聚焦倏逝场光镊、微纳光纤光镊、以及微谐振腔耦合结构型近场光镊的研究进展。最后,重点介绍了光镊在生物医学领域的应用。
Abstract
Near-field optical tweezers is a new technology based on the near-field optical theory, which can stably trap particles. Compared with conventional far-field optical tweezers based on the single-beam gradient force, near-field optical tweezers which overcomes the diffraction limitation of near-field light optical resolution, thermal effects and many other disadvantages, can achieve the capture on particles in nano order, and have aroused much attention in the field of physics, cell engineering, biomedicine, and so on. Firstly, the model of near-field optical tweezers based on evanescent field and the basic principles of trapping were described. Secondly, the development of total reflection prism optical tweezers, probe type optical tweezers, nano-pore optical tweezers, focused evanescent field optical tweezers, micro-nano fiber optical tweezers, and micro-resonator coupling structure type near-field optical tweezers was introduced. In the end, the applications of optical tweezers in the field of biomedicine were mainly introduced.
参考文献

[1] 李银妹, 龚雷, 李迪, 等. 光镊技术的研究现况. 中国激光,2015, 42(1): 0101001.

    Li Yinmei, Gong Lei, Li Di, et al. Progress in optical tweezers technology [J].Chinese Journal of Lasers, 2015, 42(1): 0101001. (in Chinese)

[2] Ashkin A, J. Dziedzic M, Bjorkholm J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles [J]. Optics Letters, 1986, 11(5): 288-290.

[3] 陈军. 光学电磁理论[M]. 北京: 科学出版社, 2005: 69-87.

    Chen Jun. Optics electromagnetic theory [M]. Beijing: Science Press, 2005: 69-87. (in Chinese)

[4] Kawata S, Sugiura T. Movement of micrometer-sized particles in the evanescent field of a laser beam[J]. Optics Letters, 1992, 17(11): 772-774.

[5] Garces-Chavez V, Dholakia K, Spalding G C. Extended-area optically induced organization of microparicles on a surface [J]. Applied Physics Letters, 2005, 86: 031106.

[6] Van Leeuwen N J, Moore L J, Partridge W D, et al. Near-field optical trapping with an actively locked cavity [J].Journal of Optics, 2011, 13(4): 044007.

[7] 肖新元. 全反射倏逝波干涉场光学力研究[D]. 南昌: 南昌航空大学, 2011: 38-56.

    Xiao Xinyuan. Study on photonic forces on particles in the evanescent interference fieldcreated by total internal reflection [D].Nanchang: Nanchang Hangkong University, 2011: 38-56. (in Chinese)

[8] Novotny L, Bian R X, Xie X S. Theory of nanometric optical tweezers[J]. Physical Review Letters, 1997, 79(4): 645-648.

[9] Zhang Guoping, Zhu Zhongru, Li Yanping, et al. Numerical analysis of near-field optical trapping usintapered fiber probe [C]//Proceedings of SPIE, 2000, 4082: 321-328.

[10] Mondal S K, Pal S S, Kapur P. Optical fiber nano-tip and 3D bottle beam as non-plasmonic optical tweezers [J]. Optics Express, 2012, 20(15): 16180-16186.

[11] Eun-Soo Kwak, Tiberiu-Dan Onuta, Dragos Amarie, et al. Optical trapping with integrated near-field apertures[J]. J Phys Chem B, 2004, 108(36): 13607-13612.

[12] Min Gu, Jean-Baptiste Haumonte, Yoan Micheau, et al. Laser trapping and manipulation under focused evanescent wave illumination[J]. Applied Physics Letters, 2004, 84(21): 4236-4238.

[13] Gu Min, Smitha Kuriakose, Gan Xiaosong. A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes[J]. Optics Express, 2007, 15(3): 1369-1375.

[14] Brambilla G, Murugan G S, Wilkinson J S, et al. Optical manipulation of microspheres along a subwavelength optical wire [J]. Opt Lett, 2007, 32(20): 3041-3043.

[15] Murugan G S, Brambilla G, Wilkinson J S, et al. Optical propulsion of individual and clustered microspheres along sub-micron optical wires[J]. Jpn J Appl Phys, 2008, 47(8): 6716-6718.

[16] Sheu Fangwen, Wu Hongyu, Chen Syhann. Using a slightly tapered optical fiber to attract and transport microparticles [J]. Optics Express, 2010, 18(6): 5574-5579.

[17] Skelton S E, Sergides M, Patel R, et al. Evanescent wave optical trapping and transport of micro-and nanoparticles on tapered optical fibers[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2012, 113: 2512-2520.

[18] Xu Chong, Lei Hongxiang, Zhang Yao, et al. Backward transport of nanoparticles in fluidic flow [J]. Optics Express, 2012, 20(3): 1930-1938.

[19] Li Ying, Hu Yanjun. Optical manipulation of gold nanoparticles using an optical nanofiber[J]. Chin Phys B, 2013, 22(3): 1-3.

[20] Shiyun Lin, Ethan Schonbrun, Kenneth Crozier. Optical manipulation with planar silicon microring resonators[J]. Nano Letters, 2010, 10: 2408-2411.

[21] Cai Hong, Poon A W. Optical manipulation of microparticles using whispering-gallery modes in a silicon nitride microdisk resonator [J]. Optics Letters, 2011, 36(21): 4257-4259.

[22] Lin Shiyun, Crozier K B. Trapping-assisted sensing of particles and proteins using on-chip optical microcavities [J]. ACS Nano, 2013, 7(2): 1725-1730.

[23] Yuan Libo, Liu Zhihai, Yang Jun, et al. Twin-core fiber optical tweezers[J]. Opitcs Express, 2008, 16(7): 4559-4566.

[24] Zhong Mincheng, Wei Xunbin, Zhou Jinhua, et al. Trapping red blood cells in living animals using optical tweezers [J]. Nature Communications, 2013, 4: 1768.

[25] Ihab Sraj, Alex Szatmary, David W M Marr, et al. Dynamic ray tracing for modeling optical cell manipulation [J]. Optics Express, 2010, 18(16): 16702-16714.

[26] Sebastien Rancourt-Grenier, Wei Mingtzo, Bai Jar-Jin, et al. Dynamic deformation of red blood cell in dual-trap optical tweezers [J]. Opitcs Express, 2010, 18(10): 10462-10472.

[27] Schek H T, Gardner M K, Cheng J, et al. Microtubule assembly dynamics at the nanoscale[J]. Curr Biol, 2007, 17(17): 1445-1455.

[28] Li Ying, Xu Linlin, Li Baojun. Optical delivery of nanospheres using arbitrary bending nanofibers [J]. Journal of Nanoparticle Research, 2012, 14: 799.

[29] 王浩威, 刘晓辉, 李银妹, 等. 应用光学微操作技术分选单条水稻染色体[J]. 生物物理学报, 2004, 20(1): 50-56.

    Wang Haowei, Liu Xiaohui, Li Yinmei, et al. Optical technic of isolation a single chromosome[J]. Acta Biophysica Sinica, 2004, 20(1): 50-56. (in Chinese)

[30] Krug II J T, Sa′nchez E J, Xie X S, et al. Design of near-field optical probes with optimal field enhancement by finite difference time domain electromagnetic simulation[J]. Journal of Chemical Physics, 2002, 116(24): 10895-10901.

[31] LaFratta C N. Optical tweezers for medical diagnostics [J]. Anal Bioanal Chem, 2013, 405: 5671-5677.

闫树斌, 赵宇, 杨德超, 李明慧, 张安富, 张文栋, 薛晨阳. 基于近场光学理论光镊的研究进展[J]. 红外与激光工程, 2015, 44(3): 1034. Yan Shubin, Zhao Yu, Yang Dechao, Li Minghui, Zhang Anfu, Zhang Wendong, Xue Chenyang. Optical tweezers based on near-field optical theory[J]. Infrared and Laser Engineering, 2015, 44(3): 1034.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!