光学 精密工程, 2020, 28 (4): 827, 网络出版: 2020-07-02   

液晶可变延迟器相位延迟-电压曲线精确快速标定

Accurate and fast calibration of liquid crystal variable retarder phase delay-voltage curve
王刚 1,1,2侯俊峰 1,1,2林佳本 1,2王东光 1,2张鑫伟 1,1,2
作者单位
1 中国科学院大学, 北京 100049
2 中国科学院 中国科学院太阳活动重点实验室, 北京 100101
摘要
相位延迟-电压曲线的精确标定是向列型液晶可变相位延迟器能否实现高精度偏振测量的关键。为了提高液晶相位延迟的测量精度, 建立了一套精确高效的自动测量系统。首先, 提出了一种新的测量方法, 该方法综合了光强法、索累补偿器法以及等偏离测量技术, 可以解决现有方法测量精度低或效率低的问题。在此基础上建立了测量系统, 并利用Labview技术实现了系统的自动化测量, 进一步缩短了测量时间。最后, 对系统的测量误差、重复精度以及工作效率进行了实验验证。实验结果表明, 系统延迟测量误差小于0.057 5%λ, 重复精度小于0.019 7%λ, 可在30 min内完成100个延迟采样点的自动化测量。该系统适用于可见光范围内液晶可变延迟器相位延迟-电压曲线的精确标定。
Abstract
The accurate calibration of the phase-delay voltage curve is the key to achieving high precision polarization measurements using a nematic Liquid Crystal Phase Variable Retarder (LCVR). An accurate and efficient automatic measurement system was established to improve the accuracy of the liquid crystal retarder delay measurement. Firstly, a new measurement method was proposed, which combined the light intensity method, the Soleil compensator method, and the equal deviation measurement technology, to solve the problem of low measurement accuracy or the low efficiency of the existing methods. A measurement system was developed to overcome these challenges, and automated measurement of the system was realized by Labview technology, which further shortened the system measurement time. Finally, the experimental errors, repeatability, and the working efficiency of the system were verified experimentally. The experimental results show that the system delay measurement error is less than 0.0575%λ, the repeat accuracy is less than 0.0197%λ, and 100 delayed sampling points can be automatically measured in 30 minutes. The system is suitable for the accurate calibration of the phase delay-voltage curve of a liquid crystal variable retarder in the visible range.
参考文献

[1] SHANG X B, TAN J Y, WILLEKENS O, et al.. Electrically controllable liquid crystal component for efficient light steering[J]. IEEE Photonics Journal, 2015, 7(2): 1-13.

    SHANG X B, TAN J Y, WILLEKENS O, et al.. Electrically controllable liquid crystal component for efficient light steering[J]. IEEE Photonics Journal, 2015, 7(2): 1-13.

[2] KOOP G. Tunable birefringent filters using liquid crystal variable retarders[J].SPIE,1994,2873: 324.

    KOOP G. Tunable birefringent filters using liquid crystal variable retarders[J].SPIE,1994,2873: 324.

[3] LAURILA T, JOUTSENOJA T, HERNBERG R, et al.. Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating[J]. Applied Optics, 2002, 41(27): 5632.

    LAURILA T, JOUTSENOJA T, HERNBERG R, et al.. Tunable external-cavity diode laser at 650 nm based on a transmission diffraction grating[J]. Applied Optics, 2002, 41(27): 5632.

[4] SHEN Z X, LI J F, ZHANG D Y, et al.. Design and test of a near-infrared tunable liquid crystal birefringent filter[J].SPIE,2014,9421: 178.

    SHEN Z X, LI J F, ZHANG D Y, et al.. Design and test of a near-infrared tunable liquid crystal birefringent filter[J].SPIE,2014,9421: 178.

[5] DENKER C, DIDKOVSKY L, MA J, et al.. Imaging magnetographs for high-resolution solar observations in the visible and near-infrared wavelength region[J]. Astronomische Nachrichten, 2003, 324(4): 332-333.

    DENKER C, DIDKOVSKY L, MA J, et al.. Imaging magnetographs for high-resolution solar observations in the visible and near-infrared wavelength region[J]. Astronomische Nachrichten, 2003, 324(4): 332-333.

[6] FINESCHI S, CAPOBIANCO G, MASSONE G. Liquid crystals Lyot filter for solar coronagraphy[J]. SPIE,2011,8148(1): 814808-8148010.

    FINESCHI S, CAPOBIANCO G, MASSONE G. Liquid crystals Lyot filter for solar coronagraphy[J]. SPIE,2011,8148(1): 814808-8148010.

[7] ZHANG Z Y, DENG Y Y, WANG D G, et al.. Near-infrared HeI 1083 nm Stokes polarimeter based on liquid crystal variable retarders[J]. SPIE, 2005, 5901: 377-388.

    ZHANG Z Y, DENG Y Y, WANG D G, et al.. Near-infrared HeI 1083 nm Stokes polarimeter based on liquid crystal variable retarders[J]. SPIE, 2005, 5901: 377-388.

[8] WU S T, EFRON U, HESS L D. Birefringence measurements of liquid crystals[J]. Applied Optics, 1984, 23(21): 3911.

    WU S T, EFRON U, HESS L D. Birefringence measurements of liquid crystals[J]. Applied Optics, 1984, 23(21): 3911.

[9] 赵海博,赵慧洁,张颖.带有补偿器的液晶相位可变延迟器特性研究[J]. 光学 精密工程, 2009,17(8): 1798-1803.

    赵海博,赵慧洁,张颖.带有补偿器的液晶相位可变延迟器特性研究[J]. 光学 精密工程, 2009,17(8): 1798-1803.

    ZHAO H B, ZHAO H J, ZHANG Y. Study on characteristics of the liquid crystal variable retarder attached with the compensator[J]. Opt. Precision Eng., 2009,17(8): 1798-1803. (in Chinese)

    ZHAO H B, ZHAO H J, ZHANG Y. Study on characteristics of the liquid crystal variable retarder attached with the compensator[J]. Opt. Precision Eng., 2009,17(8): 1798-1803. (in Chinese)

[10] 张颖,赵海博.带有补偿器的液晶相位可变延迟器[J]. 光学 精密工程, 2009, 17(8): 1798-1803.

    张颖,赵海博.带有补偿器的液晶相位可变延迟器[J]. 光学 精密工程, 2009, 17(8): 1798-1803.

    ZHANG Y , ZHAO H B. Liquid crystal variable retarder attached with compensator[J]. Opt. Precision Eng., 2009, 17(8): 1798-1803. (in Chinese)

    ZHANG Y , ZHAO H B. Liquid crystal variable retarder attached with compensator[J]. Opt. Precision Eng., 2009, 17(8): 1798-1803. (in Chinese)

[11] 王伟, 李国华, 薛冬. 液晶电控双折射率与电压关系的研究[J]. 光学学报, 2004, 24(7): 970-972.

    王伟, 李国华, 薛冬. 液晶电控双折射率与电压关系的研究[J]. 光学学报, 2004, 24(7): 970-972.

    WANG W, LI G H, XUE D. A study of voltage-dependent electric-control birefringence of liquid crystal[J]. Acta Optica Sinica, 2004, 24(7): 970-972. (in Chinese)

    WANG W, LI G H, XUE D. A study of voltage-dependent electric-control birefringence of liquid crystal[J]. Acta Optica Sinica, 2004, 24(7): 970-972. (in Chinese)

[12] 孙英姿,王东光,张洪起,等.红外波片相位延迟的测试方法及精度分析[J]. 光学学报, 2006, 26(5): 685-688.

    孙英姿,王东光,张洪起,等.红外波片相位延迟的测试方法及精度分析[J]. 光学学报, 2006, 26(5): 685-688.

    SUN Y Z, WANG D G, ZHANG H Q. Method and precision analysis for measuring retardation of infrared waveplate[J]. Acta Optica Sinica, 2006, 26(5): 685-688. (in Chinese)

    SUN Y Z, WANG D G, ZHANG H Q. Method and precision analysis for measuring retardation of infrared waveplate[J]. Acta Optica Sinica, 2006, 26(5): 685-688. (in Chinese)

[13] 张志勇, 邓元勇, 王东光,等.基于液晶波片的近红外偏振分析器[J]. 中国激光, 2010,37(3): 696-702.

    张志勇, 邓元勇, 王东光,等.基于液晶波片的近红外偏振分析器[J]. 中国激光, 2010,37(3): 696-702.

    ZHANG ZH Y, DENG Y Y, WANG D G, et al.. Near infrared polarimeter based on liquid crystal variable retardes[J]. Chinese Journal of Lasers, 2010, 37(3): 696-702. (in Chinese)

    ZHANG ZH Y, DENG Y Y, WANG D G, et al.. Near infrared polarimeter based on liquid crystal variable retardes[J]. Chinese Journal of Lasers, 2010, 37(3): 696-702. (in Chinese)

[14] BAI L L, LI D, HUANG Z Q. Liquid crystal variable retarders′ phase retardation measurement with quarter-wave plate and the validation[J]. Solid State Phenomena, 2011, 181/182: 297-300.

    BAI L L, LI D, HUANG Z Q. Liquid crystal variable retarders′ phase retardation measurement with quarter-wave plate and the validation[J]. Solid State Phenomena, 2011, 181/182: 297-300.

[15] 江继军, 张大勇, 李剑峰.液晶可变延迟器研制及其电控相位延迟测量[J]. 激光技术, 2011,35(5): 652-655.

    江继军, 张大勇, 李剑峰.液晶可变延迟器研制及其电控相位延迟测量[J]. 激光技术, 2011,35(5): 652-655.

    JIANG J J, ZHANG D Y, LI J F. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011,35(5): 652-655. (in Chinese)

    JIANG J J, ZHANG D Y, LI J F. Liquid crystal variable retarder development and electric-control retardation measurement[J]. Laser Technology, 2011,35(5): 652-655. (in Chinese)

[16] PAWONG C, KAEWON R, CHITAREE R, et al.. Measurement of phase retardation in a liquid crystal variable wave retarder using a polarizing triangular interferometer[C]. 2016 15th International Conference on Optical Communications and Networks (ICOCN), September 24-27, 2016. Hangzhou, China. New York, USA: IEEE, 2016.

    PAWONG C, KAEWON R, CHITAREE R, et al.. Measurement of phase retardation in a liquid crystal variable wave retarder using a polarizing triangular interferometer[C]. 2016 15th International Conference on Optical Communications and Networks (ICOCN), September 24-27, 2016. Hangzhou, China. New York, USA: IEEE, 2016.

王刚, 侯俊峰, 林佳本, 王东光, 张鑫伟. 液晶可变延迟器相位延迟-电压曲线精确快速标定[J]. 光学 精密工程, 2020, 28(4): 827. WANG Gang, HOU Jun-feng, LIN Jia-ben, WANG Dong-guang, ZHANG Xin-wei. Accurate and fast calibration of liquid crystal variable retarder phase delay-voltage curve[J]. Optics and Precision Engineering, 2020, 28(4): 827.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!