光学学报, 2021, 41 (1): 0123001, 网络出版: 2021-02-23   

人工光学微纳结构中的连续体束缚态:原理、发展及应用 下载: 2660次特邀综述

Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications
作者单位
1 南开大学物理科学学院、泰达应用物理研究院弱光非线性光子学教育部重点实验室, 天津 300071
2 山西大学极端光学协同创新中心, 山西 太原 030006
3 山东师范大学光场调控及应用协同创新中心, 山东 济南 250358
引用该论文

柴若衡, 刘文玮, 程化, 田建国, 陈树琪. 人工光学微纳结构中的连续体束缚态:原理、发展及应用[J]. 光学学报, 2021, 41(1): 0123001.

Ruoheng Chai, Wenwei Liu, Hua Cheng, Jianguo Tian, Shuqi Chen. Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001.

参考文献

[1] Yu P, Li J, Tang C, et al. Controllable optical activity with non-chiral plasmonic metasurfaces[J]. Light: Science & Applications, 2016, 5(7): e16096.

[2] Chen S Q, Li Z, Zhang Y B, et al. Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics[J]. Advanced Optical Materials, 2018, 6(13): 1800104.

[3] Liu Z, Du S, Cui A, et al. High-quality-factor mid-infrared toroidal excitation in folded 3D metamaterials[J]. Advanced Materials, 2017, 29(17): 1606298.

[4] Li Z C, Liu W W, Cheng H, et al. Few-layer metasurfaces with arbitrary scattering properties[J]. Science China Physics, Mechanics Astronomy, 2020, 63(8): 284202.

[5] Wen D D, Yue F Y, Liu W W, et al. Geometric metasurfaces for ultrathin optical devices[J]. Advanced Optical Materials, 2018, 6(17): 1800348.

[6] Liu W W, Li Z C, Cheng H, et al. Momentum analysis for metasurfaces[J]. Physical Review Applied, 2017, 8(1): 014012.

[7] Liu Z C, Li Z C, Liu Z, et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 2017, 4(8): 2061-2069.

[8] Li J X, Yu P, Tang C C, et al. Bidirectional perfect absorber using free substrate plasmonic metasurfaces[J]. Advanced Optical Materials, 2017, 5(12): 1700152.

[9] Li Z C, Liu W W, Cheng H, et al. Manipulation of the photonic spin Hall effect with high efficiency in gold-nanorod-based metasurfaces[J]. Advanced Optical Materials, 2017, 5(20): 1700413.

[10] Xiang J, Xu Y, Chen J D, et al. Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system[J]. Nanophotonics, 2020, 9(1): 133-142.

[11] Epstein I, Alcaraz D, Huang Z Q, et al. Far-field excitation of singular graphene plasmon cavities with ultra-compressed mode volumes[J]. Science, 2020, 368(6496): 1219-1223.

[12] Jahani S, Jacob Z. All-dielectric metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 23-36.

[13] Hsu C W, Zhen B, Stone A D, et al. Bound states in the continuum[J]. Nature Reviews Materials, 2016, 1: 16048.

[14] Limonov M F, Rybin M V, Poddubny A N, et al. Fano resonances in photonics[J]. Nature Photonics, 2017, 11(9): 543-554.

[15] Miroshnichenko A E, Flach S, Kivshar Y S. Fano resonance in nanoscale structures[J]. Reviews of Modern Physics, 2020, 82(3): 2257-2297.

[16] Song Q J, Hu J S, Dai S W, et al. 6(34): eabc1160[J]. a lasing threshold mode induced by PT symmetry. Science Advances, 2020.

[17] von NeumannJ, Wigner EP. Über merkwürdige diskrete eigenwerte[M] ∥Wightman A S. The collected works of Eugene Paul Wigner. Berlin: Springer, 1993: 291- 293.

[18] Friedrich H, Wintgen D. Interfering resonances and bound states in the continuum[J]. Physical Review A, 1985, 32(6): 3231-3242.

[19] Marinica D C, Borisov A G, Shabanov S V. Bound states in the continuum in photonics[J]. Physical Review Letters, 2008, 100(18): 183902.

[20] Plotnik Y, Peleg O, Dreisow F, et al. Experimental observation of optical bound states in the continuum[J]. Physical Review Letters, 2011, 107(18): 183901.

[21] Hsu C W, Zhen B, Lee J, et al. Observation of trapped light within the radiation continuum[J]. Nature, 2013, 499(7457): 188-191.

[22] Koshelev K, Lepeshov S, Liu M K, et al. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum[J]. Physical Review Letters, 2018, 121(19): 193903.

[23] Albo A, Fekete D, Bahir G. Electronic bound states in the continuum above (Ga, In)(As, N)/(Al, Ga)As quantum wells[J]. Physical Review B, 2012, 85(11): 115307.

[24] Zhang J M, Braak D, Kollar M. Bound states in the continuum realized in the one-dimensional two-particle Hubbard model with an impurity[J]. Physical Review Letters, 2012, 109(11): 116405.

[25] Xiao Y X, Zhang Z Q, Chan C T. A band of bound states in the continuum induced by disorder[J]. Scientific Reports, 2018, 8: 5160.

[26] Takeichi M, Murakami S. Topological linelike bound states in the continuum[J]. Physical Review B, 2019, 99(3): 035128.

[27] Porter R, Evans D V. Embedded Rayleigh-Bloch surface waves along periodic rectangular arrays[J]. Wave Motion, 2005, 43(1): 29-50.

[28] Linton C M. McIver P. Embedded trapped modes in water waves and acoustics[J]. Wave Motion, 2007, 45(1/2): 16-29.

[29] Xiao Y X, Ma G C, Zhang Z Q, et al. Topological subspace-induced bound state in the continuum[J]. Physical Review Letters, 2017, 118(16): 166803.

[30] Lim T C, Farnell G W. Character of pseudo surface waves on anisotropic crystals[J]. The Journal of the Acoustical Society of America, 1969, 45(4): 845-851.

[31] Lyapina A A, Maksimov D N, Pilipchuk A S, et al. Bound states in the continuum in open acoustic resonators[J]. Journal of Fluid Mechanics, 2015, 780: 370-387.

[32] Sadreev A F, Pilipchuk A S, Lyapina A A. Tuning of Fano resonances by rotation of continuum: wave faucet[J]. Europhysics Letters, 2017, 117(5): 50011.

[33] Lyapina A A, Pilipchuk A S, Sadreev A F. Trapped modes in a non-axisymmetric cylindrical waveguide[J]. Journal of Sound and Vibration, 2018, 421: 48-60.

[34] Fan S H, Joannopoulos J D. Analysis of guided resonances in photonic crystal slabs[J]. Physical Review B, 2002, 65(23): 235112.

[35] Koshelev K, Bogdanov A, Kivshar Y. Engineering with bound states in the continuum[J]. Optics and Photonics News, 2020, 31(1): 38-45.

[36] Fan S, Suh W, Joannopoulos J D. Temporal coupled-mode theory for the Fano resonance in optical resonators[J]. Journal of the Optical Society of America A, 2003, 20(3): 569-572.

[37] Sadrieva Z, Frizyuk K, Petrov M, et al. Multipolar origin of bound states in the continuum[J]. Physical Review B, 2019, 100(11): 115303.

[38] Suh W, Wang Z, Fan S H. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities[J]. IEEE Journal of Quantum Electronics, 2004, 40(10): 1511-1518.

[39] Remacle F, Munster M. Pavlov-Verevkin V B, et al. Trapping in competitive decay of degenerate states[J]. Physics Letters A, 1990, 145(5): 265-268.

[40] Volya A, Zelevinsky V. Non-Hermitian effective Hamiltonian and continuum shell model[J]. Physical Review C, 2003, 67(5): 054322.

[41] Kikkawa R, Nishida M, Kadoya Y. Polarization-based branch selection of bound states in the continuum in dielectric waveguide modes anti-crossed by a metal grating[J]. New Journal of Physics, 2019, 21(11): 113020.

[42] Koshelev K, Favraud G, Bogdanov A, et al. Nonradiating photonics with resonant dielectric nanostructures[J]. Nanophotonics, 2019, 8(5): 725-745.

[43] SadrievaZ, FrizyukK, PetrovM, et al. Multipole analysis of bound states in the continuum supported by a periodic array of spheres[C]∥2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), September 16-21, 2019, Rome, Italy. New York: IEEE, 2019: 354- 356.

[44] Chen W, Chen Y, Liu W. Singularities and Poincaré indices of electromagnetic multipoles[J]. Physical Review Letters, 2019, 122(15): 153907.

[45] Chen W J, Chen Y T, Liu W. Multipolar conversion induced subwavelength high-Q Kerker supermodes with unidirectional radiations[J]. Laser & Photonics Reviews, 2019, 13(9): 1900067.

[46] Doeleman H M. Monticone F, den Hollander W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-412.

[47] Carletti L, Kruk S S, Bogdanov A A, et al. High-harmonic generation at the nanoscale boosted by bound states in the continuum[J]. Physical Review Research, 2019, 1(2): 023016.

[48] Kim C S, Satanin A M, Joe Y S, et al. Resonant tunneling in a quantum waveguide: effect of a finite-size attractive impurity[J]. Physical Review B, 1999, 60(15): 10962-10970.

[49] Fan S H, Villeneuve P R, Joannopoulos J D, et al. Theoretical analysis of channel drop tunneling processes[J]. Physical Review B, 1999, 59(24): 15882-15892.

[50] Rotter I, Sadreev A F. Influence of branch points in the complex plane on the transmission through double quantum dots[J]. Physical Review E, 2004, 69(6): 066201.

[51] Rotter I, Sadreev A F. Zeros in single-channel transmission through double quantum dots[J]. Physical Review E, 2005, 71(4): 046204.

[52] Bulgakov E N, Sadreev A F. Bound states in the continuum in photonic waveguides inspired by defects[J]. Physical Review B, 2008, 78(7): 075105.

[53] Ndangali R F, Shabanov S V. Electromagnetic bound states in the radiation continuum for periodic double arrays of subwavelength dielectric cylinders[J]. Journal of Mathematical Physics, 2010, 51(10): 102901.

[54] Hsu C W, Zhen B, Chua S L, et al. Bloch surface eigenstates within the radiation continuum[J]. Light: Science & Applications, 2013, 2(7): e84.

[55] Weimann S, Xu Y, Keil R, et al. Compact surface Fano states embedded in the continuum of waveguide arrays[J]. Physical Review Letters, 2013, 111(24): 240403.

[56] Yang Y, Peng C, Liang Y, et al. Analytical perspective for bound states in the continuum in photonic crystal slabs[J]. Physical Review Letters, 2014, 113(3): 037401.

[57] Bulgakov E N, Sadreev A F. Robust bound state in the continuum in a nonlinear microcavity embedded in a photonic crystal waveguide[J]. Optics Letters, 2014, 39(17): 5212-5215.

[58] Ni L F, Wang Z X, Peng C, et al. Tunable optical bound states in the continuum beyond in-plane symmetry protection[J]. Physical Review B, 2016, 94(24): 245148.

[59] Li L S, Yin H C. Bound states in the continuum in double layer structures[J]. Scientific Reports, 2016, 6: 26988.

[60] Wang Y F, Song J M, Dong L, et al. Optical bound states in slotted high-contrast gratings[J]. Journal of the Optical Society of America B, 2016, 33(12): 2472-2479.

[61] Wang T C, Zhang S H. Large enhancement of second harmonic generation from transition-metal dichalcogenide monolayer on grating near bound states in the continuum[J]. Optics Express, 2018, 26(1): 322-337.

[62] Wang H F, Gupta S K, Zhu X Y, et al. Bound states in the continuum in a bilayer photonic crystal with TE-TM cross coupling[J]. Physical Review B, 2018, 98(21): 214101.

[63] Krasikov S D, Bogdanov A A, Iorsh I V. Nonlinear bound states in the continuum of a one-dimensional photonic crystal slab[J]. Physical Review B, 2018, 97(22): 224309.

[64] Bulgakov E N, Maksimov D N, Semina P N, et al. Propagating bound states in the continuum in dielectric gratings[J]. Journal of the Optical Society of America B, 2018, 35(6): 1218-1222.

[65] Wang X, Li S, Zhou C. Polarization-independent toroidal dipole resonances driven by symmetry-protected BIC in ultraviolet region[J]. Optics Express, 2020, 28(8): 11983-11989.

[66] Koshelev K L, Sychev S K, Sadrieva Z F, et al. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum[J]. Physical Review B, 2018, 98(16): 161113.

[67] Azzam S I, Shalaev V M, Boltasseva A, et al. Formation of bound states in the continuum in hybrid pasmonic-photonic systems[J]. Physical Review Letters, 2018, 121(25): 253901.

[68] Zhen B, Hsu C W, Lu L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401.

[69] Zhang Y W, Chen A, Liu W Z, et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 2018, 120(18): 186103.

[70] Chen A, Liu W Z, Zhang Y W, et al. Observing vortex polarization singularities at optical band degeneracies[J]. Physical Review B, 2019, 99(18): 180101.

[71] Liu W Z, Wang B, Zhang Y W, et al. Circularly polarized states spawning from bound states in the continuum[J]. Physical Review Letters, 2019, 123(11): 116104.

[72] Jin J C, Yin X F, Ni L F, et al. Topologically enabled ultrahigh-Q guided resonances robust to out-of-plane scattering[J]. Nature, 2019, 574(7779): 501-504.

[73] Yu N F, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337.

[74] Chen S, Li Z, Liu W, et al. From single-dimensional to multidimensional manipulation of optical waves with metasurfaces[J]. Advanced Materials, 2019, 31(16): 1802458.

[75] Chen X, Huang L, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198.

[76] Liu W W, Li Z C, Cheng H, et al. Metasurface enabled wide-angle Fourier lens[J]. Advanced Materials, 2018, 30(23): 1706368.

[77] Chen S Q, Liu W W, Li Z C, et al. Metasurface-empowered optical multiplexing and multifunction[J]. Advanced Materials, 2020, 32(3): 1805912.

[78] Liu W W, Li Z C, Li Z, et al. Energy-tailorable spin-selective multifunctional metasurfaces with full Fourier components[J]. Advanced Materials, 2019, 31(32): 1901729.

[79] Li Z C, Liu W W, Cheng H, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 2020, 32(26): 1907983.

[80] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901.

[81] Yang B, Liu W W, Li Z C, et al. Ultrahighly saturated structural colors enhanced by multipolar-modulated metasurfaces[J]. Nano Letters, 2019, 19(7): 4221-4228.

[82] Ni X J, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

[83] Zheng G, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312.

[84] Wen D D, Yue F Y, Li G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241.

[85] Li G X, Chen S M, Pholchai N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 2015, 14(6): 607-612.

[86] Li G X, Zhang S, Zentgraf T. Nonlinear photonic metasurfaces[J]. Nature Reviews Materials, 2017, 2(5): 17010.

[87] Li Z, Liu W W, Li Z C, et al. Tripling the capacity of optical vortices by nonlinear metasurface[J]. Laser & Photonics Reviews, 2018, 12(11): 1800164.

[88] Li Z, Liu W, Li Z, et al. Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation[J]. Optics Letters, 2017, 42(16): 3117-3120.

[89] Ma M L, Li Z, Liu W W, et al. Optical information multiplexing with nonlinear coding metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(7): 1900045.

[90] Krasnok A, Tymchenko M, Alù A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 2018, 21(1): 8-21.

[91] Li Z, Liu W W, Geng G Z, et al. Multiplexed nondiffracting nonlinear metasurfaces[J]. Advanced Functional Materials, 2020, 30(23): 1910744.

[92] Huang L, Chen X, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755.

[93] Bao Y J, Ni J C, Qiu C W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 2020, 32(6): 1905659.

[94] Li Z, Cheng H, Liu Z, et al. Plasmonic Airy beam generation by both phase and amplitude modulation with metasurfaces[J]. Advanced Optical Materials, 2016, 4(8): 1230-1235.

[95] Ohana D, Desiatov B, Mazurski N, et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides[J]. Nano Letters, 2016, 16(12): 7956-7961.

[96] Zhang Y B, Li Z C, Liu W W, et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces[J]. Advanced Optical Materials, 2019, 7(6): 1801273.

[97] Li Z, Kim M H, Wang C, et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces[J]. Nature Nanotechnology, 2017, 12(7): 675-683.

[98] Zhou Y, Zheng H Y, Kravchenko I I, et al. Flat optics for image differentiation[J]. Nature Photonics, 2020, 14(5): 316-323.

[99] Cheng H, Liu Z C, Chen S Q, et al. Emergent functionality and controllability in few-layer metasurfaces[J]. Advanced Materials, 2015, 27(36): 5410-5421.

[100] Cheng H, Wei X Y, Yu P, et al. Integrating polarization conversion and nearly perfect absorption with multifunctional metasurfaces[J]. Applied Physics Letters, 2017, 110(17): 171903.

[101] Chen S Q, Zhang Y B, Li Z, et al. Empowered layer effects and prominent properties in few-layer metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801477.

[102] 杨渤, 程化, 陈树琪, 等. 基于傅里叶分析的超表面多维光场调控[J]. 光学学报, 2019, 39(1): 0126005.

    Yang B, Cheng H, Chen S Q, et al. Multi-dimensional manipulation of optical field by metasurfaces based on Fourier analysis[J]. Acta Optica Sinica, 2019, 39(1): 0126005.

[103] 李占成, 程化, 陈树琪. 人工光学微结构研究进展[J]. 物理, 2019, 48(6): 357-366.

    Li Z C, Cheng H, Chen S Q. Artificial optical nanostructures[J]. Physics, 2019, 48(6): 357-366.

[104] Zhang Y B, Liu H, Cheng H, et al. Multidimensional manipulation of wave fields based on artificial microstructures[J]. Opto-Electronic Advances, 2020, 3(11): 200002.

[105] Liu M K, Choi D Y. Extreme Huygens' metasurfaces based on quasi-bound states in the continuum[J]. Nano Letters, 2018, 18(12): 8062-8069.

[106] Xu L, Kamali K Z, Huang L J, et al. Dynamic nonlinear image tuning through magnetic dipole quasi-BIC ultrathin resonators[J]. Advanced Science, 2019, 6(15): 1802119.

[107] Koshelev K, Tang Y T, Li K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644.

[108] Liu Z J, Xu Y, Lin Y, et al. High-Q quasibound states in the continuum for nonlinear metasurfaces[J]. Physical Review Letters, 2019, 123(25): 253901.

[109] Cong L Q, Singh R. Symmetry-protected dual bound states in the continuum in metamaterials[J]. Advanced Optical Materials, 2019, 7(13): 1900383.

[110] Mermet-LyaudozR, DuboisF, Hoang NV, et al. ( 2019-05-09)[2020-09-17]. https:∥arxiv.org/abs/1905.03868?context=physics.optics.

[111] Kupriianov A S, Xu Y, Sayanskiy A, et al. Metasurface engineering through bound states in the continuum[J]. Physical Review Applied, 2019, 12(1): 014024.

[112] Fedotov V A, Rose M, Prosvirnin S L, et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry[J]. Physical Review Letters, 2007, 99(14): 147401.

[113] Yu P C, Kupriianov A S, Dmitriev V, et al. All-dielectric metasurfaces with trapped modes: group-theoretical description[J]. Journal of Applied Physics, 2019, 125(14): 143101.

[114] Sayanskiy A, Kupriianov A S, Xu S, et al. Controlling high-Q trapped modes in polarization-insensitive all-dielectric metasurfaces[J]. Physical Review B, 2019, 99(8): 085306.

[115] Han S, Cong L Q, Srivastava Y K, et al. All-dielectric active terahertz photonics driven by bound states in the continuum[J]. Advanced Materials, 2019, 31(37): 1901921.

[116] Monticone F, Sounas D, Krasnok A, et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates[J]. ACS Photonics, 2019, 6(12): 3108-3114.

[117] Monticone F, Alù A. Embedded photonic eigenvalues in 3D nanostructures[J]. Physical Review Letters, 2014, 112(21): 213903.

[118] Koshelev K, Bogdanov A, Kivshar Y. Meta-optics and bound states in the continuum[J]. Science Bulletin, 2019, 64(12): 836-842.

[119] Baryshnikova K V, Smirnova D A. Luk'Yanchuk B S, et al. Optical anapoles: concepts and applications[J]. Advanced Optical Materials, 2019, 7(14): 1801350.

[120] Rybin M V, Koshelev K L, Sadrieva Z F, et al. High-Q supercavity modes in subwavelength dielectric resonators[J]. Physical Review Letters, 2017, 119(24): 243901.

[121] Bogdanov A A, Koshelev K L, Kapitanova P V, et al. Bound states in the continuum and Fano resonances in the strong mode coupling regime[J]. Advanced Photonics, 2019, 1(1): 016001.

[122] Carletti L. Koshelev K, de Angelis C, et al. Giant nonlinear response at the nanoscale driven by bound states in the continuum[J]. Physical Review Letters, 2018, 121(3): 033903.

[123] Koshelev K, Kruk S, Melik-Gaykazyan E, et al. Subwavelength dielectric resonators for nonlinear nanophotonics[J]. Science, 2020, 367(6475): 288-292.

[124] Liang Y, Koshelev K, Zhang F C, et al. Bound states in the continuum in anisotropic plasmonic metasurfaces[J]. Nano Letters, 2020, 20(9): 6351-6356.

[125] Fei Z Y, Zhao W J, Palomaki T A, et al. Ferroelectric switching of a two-dimensional metal[J]. Nature, 2018, 560(7718): 336-339.

[126] Yao X H, Belyanin A. Giant optical nonlinearity of graphene in a strong magnetic field[J]. Physical Review Letters, 2012, 108(25): 255503.

[127] Foley J M, Young S M, Phillips J D. Symmetry-protected mode coupling near normal incidence for narrow-band transmission filtering in a dielectric grating[J]. Physical Review B, 2014, 89(16): 165111.

[128] Mocella V, Romano S. Giant field enhancement in photonic resonant lattices[J]. Physical Review B, 2015, 92(15): 155117.

[129] Yoon J W, Song S H, Magnusson R. Critical field enhancement of asymptotic optical bound states in continuum[J]. Scientific Reports, 2015, 5: 18301.

[130] Zhang M D, Zhang X D. Ultrasensitive optical absorption in graphene based on bound states in the continuum[J]. Scientific Reports, 2015, 5: 8266.

[131] Kodigala A, Lepetit T, Gu Q, et al. Lasing action from photonic bound states in continuum[J]. Nature, 2017, 541(7636): 196-199.

[132] Rybin M, Kivshar Y. Supercavity lasing[J]. Nature, 2017, 541(7636): 164-165.

[133] BahariB, ValliniF, LepetitT, et al. and steerable vortex lasers using bound states in continuum[EB/OL]. ( 2017-07-16)[2020-09-17]. https:∥arxiv.org/abs/1707. 00181.

[134] Ha S T, Fu Y H, Emani N K, et al. Directional lasing in resonant semiconductor nanoantenna arrays[J]. Nature Nanotechnology, 2018, 13(11): 1042-1047.

[135] Wang B, Liu W Z, Zhao M X, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 2020, 14(10): 623-628.

[136] Huang C, Zhang C, Xiao S M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021.

[137] Yu Z, Sun X. Acousto-optic modulation of photonic bound state in the continuum[J]. Light: Science & Applications, 2020, 9: 1.

[138] Yu Z J, Tong Y Y, Tsang H K, et al. High-dimensional communication on etchless lithium niobate platform with photonic bound states in the continuum[J]. Nature Communications, 2020, 11: 2602.

[139] Liu Y, Zhou W, Sun Y. Optical refractive index sensing based on high-Q bound states in the continuum in free-space coupled photonic crystal slabs[J]. Sensors, 2017, 17(8): 1861-1872.

[140] Romano S, Lamberti A, Masullo M, et al. Optical biosensors based on photonic crystals supporting bound states in the continuum[J]. Materials, 2018, 11(4): 526.

[141] Romano S, Zito G. Yépez S N L, et al. Tuning the exponential sensitivity of a bound-state-in-continuum optical sensor[J]. Optics Express, 2019, 27(13): 18776-18786.

[142] LeitisA, TittlA, Liu MK, et al., 2019, 5(5): eaaw2871.

[143] Yesilkoy F, Arvelo E R, Jahani Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396.

[144] Ndao A, Hsu L, Cai W, et al. Differentiating and quantifying exosome secretion from a single cell using quasi-bound states in the continuum[J]. Nanophotonics, 2020, 9(5): 1081-1086.

[145] Vardeny Z V, Nahata A, Agrawal A. Optics of photonic quasicrystals[J]. Nature Photonics, 2013, 7(3): 177-187.

[146] Tang Y T, Deng J H, Li K F, et al. Quasicrystal photonic metasurfaces for radiation controlling of second harmonic generation[J]. Advanced Materials, 2019, 31(23): 1901188.

[147] Feng L, El-Ganainy R, Ge L. Non-Hermitian photonics based on parity-time symmetry[J]. Nature Photonics, 2017, 11(12): 752-762.

[148] Kartashov Y V, Milián C, Konotop V V, et al. Bound states in the continuum in a two-dimensional PT-symmetric system[J]. Optics Letters, 2018, 43(3): 575-578.

柴若衡, 刘文玮, 程化, 田建国, 陈树琪. 人工光学微纳结构中的连续体束缚态:原理、发展及应用[J]. 光学学报, 2021, 41(1): 0123001. Ruoheng Chai, Wenwei Liu, Hua Cheng, Jianguo Tian, Shuqi Chen. Bound States of Continuum in Optical Artificial Micro-Nanostructures: Fundamentals, Developments and Applications[J]. Acta Optica Sinica, 2021, 41(1): 0123001.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!