红外与激光工程, 2016, 45 (12): 1225002, 网络出版: 2017-01-12   

金属开口谐振环结构的太赫兹波吸收特性

Terahertz absorbing properties of different metal split-ring resonators
作者单位
太赫兹光电子学教育部重点实验室, 北京市太赫兹波谱与成像重点实验室, 首都师范大学 物理系, 北京 100048
摘要
太赫兹调制器、滤波器、吸收器是太赫兹波应用领域的关键器件, 而金属开口谐振环是这些器件的常用结构。通过仿真及实验的手段, 系统地比较了不同亚波长金属开口谐振环结构的太赫兹波吸收特性。设计并制备两种不同形式的亚波长金属谐振环, 利用时域有限差分(FDTD)的模拟方法与光泵浦太赫兹探测(OPTP)的实验方法, 分析了电磁波入射谐振环时,TM与TE模式下的太赫兹透射特性。发现在TM模式下, 吸收峰峰值均反比于谐振环的等效电容值与等效电感值。而在TE模式下, 由于偶极子振荡长度相同导致了两种谐振环吸收峰峰值相近。此外, 改变外部光激励条件时实验结果表明TM模式下, 单开口环比双开口环对光激励更敏感: 泵浦光功率为5 mW相比无泵浦光时, 单开口环透射率增加了80%, 而双开口环透射率仅增加了43%。
Abstract
Terahertz modulator, filters and absorbers are the key parts of terahertz application, while the metal split ring is the common structure of these applications. Comparisons of terahertz absorbing properties, which were caused by different structures of subwavelength metal split ring resonator, were studied by simulation and experiment. Two split ring resonators which had different split gap types were fabricated. By using Finite Difference Time Domain(FDTD) simulation and Optical Pump Terahertz Probe (OPTP) experimental methods, the terahertz transmittance curves of TM mode and TE mode were investigated when the electromagnetic waves were perpendicular to the samples. The analysis found that in TM mode, the frequency of the absorption peak was inversely proportional to the value of the effective inductance and the effective capacitance. But in TE mode, the similar resonance frequency of the two SRRs were caused by the same length of dipole resonance. In addition, when optical excitation power changed, the experimental result indicates that one-gap SRR is more sensitive than two-gap SRR in TM mode. As the pump light power up to 5 mW, the resonance frequency transmittance of one-gap SRR raised 80% than the pump light condition at 0 mW. But, two-gap SRR only raised 43% when the light condition changed from 0 mW to 5 mW.
参考文献

[1] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782.

[2] Zhao X, Fan K, Zhang J, et al. Optically tunable metamaterial perfect absorber on highly flexible substrate[J].Sensors & Actuators A Physical, 2015, 231: 74-80.

[3] Feng L, Zhang X, Liao M, et al. High speed electrically-controlled terahertz modulator[J]. Superlattices & Microstructures, 2015, 79: 72-78.

[4] Gu J, Singh R, Tian Z, et al. Terahertz superconductor metamaterial[J]. Applied Physics Letters, 2010, 97(7): 071102.

[5] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

[6] 武阿妮, 李晨毓, 周庆莉,等. 温度对太赫兹亚波长金属结构共振特性的影响[J]. 红外与激光工程, 2015, 44(6): 1832-1835.

    Wu A′ni, Li Chengyu, Zhou Qingli, et al. Influence of temperature on resonant properties in terahertz subwavelength metal structures[J]. Infared and Laser Engineering, 2015, 44(6): 1832-1835. (in Chinese)

[7] 刘建丰, 周庆莉, 施宇蕾,等. 基底对亚波长金属双环结构太赫兹透射性质的影响[J]. 物理学报, 2012, 61(4): 048101.

    Liu Jianfeng, Zhou Qingli, Shi Yulei, et al. The effect of substrate on terahertz transmission properties through metal subwavelength dual-ring structure[J]. Acta Physica Sinica,2012, 61(4): 048101. (in Chinese)

[8] 韩昊, 武东伟, 刘建军, 等. 一种太赫兹类电磁诱导透明超材料谐振器[J]. 光学学报, 2014, 34(4): 240-245.

    Han Hao, Wu Dongwei, Liu Jianjun, et al. A terahertz metamaterial analog of electromagnetically induced transparency[J]. Acta Optica Sinica, 2014, 34(4): 240-245. (in Chinese)

[9] Su X, Ouyang C, Xu N, et al. Broadband terahertz transparency in a switchable metasurface[J]. IEEE Photonics Journal, 2015, 7(1): 1-8.

[10] Liu J, Zhou Q, Shi Y, et al. Study of dipole arrays at terahertz frequencies[J]. Optics Communications, 2013, 291(6): 26-30.

[11] 张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学, 2014, 7(3): 349-364.

    Zhang Jianfa, Yuan Xiaodong, Qin Shiqiao. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)

[12] 李琦, 胡佳琦, 杨永发. 太赫兹Gabor同轴数字全息二维再现像复原[J]. 光学 精密工程, 2014, 22(8): 2188-2195.

    Li Qi, Hu Jiaqi, Yang Yongfa. 2D reconstructed-image restoration of terahertz Gabor in-line digital holography[J].Optics and Precision Engineering, 2014, 22(8): 2188-2195. (in Chinese)

[13] 崔海林, 焦磊, 李丽娟, 等. 基于太赫兹亚波长超材料的偏振不敏感调制器的理论研究[J]. 红外与激光工程, 2014, 43(11): 3849-3853.

    Cui Hailin, Jiao Lei, Li Lijuan, et al. Theoretical investigations of THz subwavelength metamaterials polarization insensitive modulators[J]. Infared and Laser Engineering, 2014, 43(11): 3849-3853. (in Chinese)

李依涵, 张米乐, 崔海林, 何敬锁, 张存林. 金属开口谐振环结构的太赫兹波吸收特性[J]. 红外与激光工程, 2016, 45(12): 1225002. Li Yihan, Zhang Mile, Cui Hailin, He Jingsuo, Zhang Cunlin. Terahertz absorbing properties of different metal split-ring resonators[J]. Infrared and Laser Engineering, 2016, 45(12): 1225002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!