人工晶体学报, 2020, 49 (10): 1904, 网络出版: 2021-01-09  

石墨坩埚厚度对感应加热制备太阳能级多晶硅影响的数值模拟研究

Numerical Simulation of Influence of Graphite Crucible Thickness on Solar-Grade Polysilicon Prepared by Induction Heating
作者单位
宁夏大学,宁夏光伏材料重点实验室,银川 750021
摘要
定向凝固法制备的多晶硅是目前主要的光伏原材料,制备过程中热场结构和硅熔体对流形态对于生长高质量的多晶硅极为重要,本文利用专业晶体生长软件CGSim 对制备太阳能级多晶硅用真空感应铸锭炉中的石墨坩埚进行改进并进行了数值模拟,分析了不同石墨坩埚厚度的变化对热场、流场、固液界面、硅晶体应力场以及和V/G值的影响。结果表明,当石墨坩埚厚度为20 mm,可获得良好的对流形态、平坦的固液界面、合理的V/G值等,有利于节约多晶硅的生产成本并提高多晶硅的品质,为生产实践中工艺方案优化及缺陷分析等提供重要的理论依据。
Abstract
Polycrystalline silicon prepared by the directional solidification method is currently the main photovoltaic raw material. During the preparation process, the thermal field structure and the control of the convection morphology of the silicon melt are extremely important for the growth of high-quality polycrystalline silicon. This article uses professional crystal growth software CGSim to prepare solar-grade polycrystalline silicon with vacuum. The graphite crucible in the induction casting furnace was improved and numerical simulation was carried out. The influence of the thickness of different graphite crucibles on the thermal field, flow field, solid-liquid interface, silicon crystal stress field, and V/G value was analyzed. The results show that when the thickness of the graphite crucible is 20 mm, good convection morphology, flat solid-liquid interface, reasonable V/G value, etc. can be obtained, which are beneficial to save the production cost of polysilicon and improve the quality of polysilicon. It provides an important theoretical basis for process optimization and defect aualysis in production practice.
参考文献

[1] Gong D R, Yuan Z Z, Xv M W, et al. Numerical simulation of the optimized hot zone structure of the multi-crystalline silicon directional solidification furnace for photovoltaics[J]. Material Sciences, 2014, 4(5): 159-167.

[2] 马晓东,张 剑,李廷举.坩埚设计对多晶硅铸造应力的影响[J].铸造技术,2008,29(12):46-48.

[3] 刘志辉,罗玉峰,饶森林,等.坩埚厚度对多晶硅定向凝固的影响[J].热加工工艺,2017,46(11):74-77.

[4] 刘秋娣,林安中,林喜斌.多晶硅锭的制备及其形貌组织的研究[J].稀有金属,2002,26(6):416-419.

[5] Wu B, Stoddard N, Ma R H, et al. Bulk multicrystalline silicon growth for photovoltaic (PV) application[J].Journal of Crystal Growth, 2008,310(7-9): 2178-2184.

[6] Lan C W, Lan, W C, Lee T F, et al. Grain control in directional solidification of photovoltaic silicon[J]. Journal of Crystal Growth, 2012, 360: 68-75.

[7] 高忙忙,薛子文,李 进,等.感应加热制备太阳能级铸造准单晶硅熔体流动行为研究[J].人工晶体学报,2015,44(7):1941-1945.

[8] Liu L, Nakano S, Kakimoto K. Carbon concentration and particle precipitation during directional solidification of multicrystalline silicon for solar cells[J]. Journal of Crystal Growth, 2008, 310(7/9): 2192-2197.

[9] Ding C, Huang M, Zhong G, et al. A design of crucible susceptor for the seeds preservation during a seeded directional solidification process[J]. Journal of Crystal Growth, 2014, 387: 73-80.

[10] Sanmugavel S, Srinivasan M, Aravinth K, et al. Numerical investigations on hot-zone modified DS furnace for mc-Si growth process[J]. AIP Conference Proceedings, 2016, 1731(1): 1-3.

[11] Karuppasamy P, Srinivasan M, Aravinth K, et al. Numerical modelling on modified directional solidification process of multi-crystalline silicon growth for photovoltaic applications[J]. Materials Today: Proceedings, 2018, 5(11): 23014-23021.

[12] Wu Z, Zhong G, Zhang Z, et al. Optimization of the high-performance multi-crystalline silicon solidification process by insulation partition design using transient global simulations[J]. Journal of crystal growth, 2015, 426: 110-116.

[13] 吕国强,马文会,王 华,等.工业硅真空感应精炼过程熔体流动行为数值模拟[J].材料热处理学报,2013,34(10):181-186.

[14] 张志强,黄 强,黄振飞,等.定向凝固多晶硅中细晶产生的原因分析[J].中国科学(技术科学),2011,41(6):754-759.

[15] Nagarajan S G, Sanmugavel S, Kesavan V, et al. Influence of additional insulation block on multi-crystalline silicon ingot growth process for PV applications[J]. Journal of Crystal Growth, 2019, 516: 10-16.

[16] Kesavan V, Srinivasan M, Ramasamy P. Numerical investigation of directional solidification process for improving multi-crystalline silicon ingot quality for photovoltaic applications[J].Materials Letters, 2019, 241: 80-183.

[17] Jiptner K, Gao B, Harada H, et al.Thermal stress induced dislocation distribution in directional solidification of Si for PV application[J]. Journal of Crystal Growth, 2014, 408: 19-24.

[18] 朱徐立,多晶硅定向凝固过程中热应力的建模研究[J].厦门城市职业学院学报,2019,21(1):75-81,88.

[19] 姚连增,晶体生长基础[M].合肥:中国科学与技术大学出版社,1995:233-236.

[20] 张向宇,关小军,潘忠奔,等.热屏位置对直拉单晶硅V/G、点缺陷和热应力影响的模拟[J].人工晶体学报,2014,43(4):771-777.

[21] 袁 强,刘运平,张胜恩,等.熔炼用大型人造石墨坩埚的研制[J].炭素技术,2018,37(1):38-40.

韩博, 李进, 安百俊. 石墨坩埚厚度对感应加热制备太阳能级多晶硅影响的数值模拟研究[J]. 人工晶体学报, 2020, 49(10): 1904. HAN Bo, LI Jin, AN Baijun. Numerical Simulation of Influence of Graphite Crucible Thickness on Solar-Grade Polysilicon Prepared by Induction Heating[J]. Journal of Synthetic Crystals, 2020, 49(10): 1904.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!