红外与毫米波学报, 2014, 33 (4): 344, 网络出版: 2014-09-01  

基于中红外波段的等离子体金属孔天线

Plasmon antenna at mid-infrared made by metallic apertures
作者单位
南京师范大学 物理科学与技术学院,江苏 南京210023
摘要
研究了周期性金属孔阵列的光学和远场辐射特性,实验发现所有样品在中红外波段都有两个透射峰,当金属孔径或者孔阵的晶格常数变大时,透过峰的中心频率发生红移.在透过率的中心频率附近,周期性的金属孔阵列表现出偶极子阵列的特性,其远场辐射特性随着孔径的减小或者孔阵列晶格常数的增大而增强.
Abstract
The transmission spectra and far-field radiation patterns of periodic metallic aperture arrays are studied in mid-infrared region. We find that the samples have two transmission bands in mid-infrared region. The central positions of transmission bands red-shifts with the increase of the hole-diameter or the lattice constant. The periodic metallic aperture arrays can behave as electrical dipole arrays at the central positions of the transmission bands. The radiation intensity in far-field is strong at the two frequencies. The intensity increase with the decrease of the hole diameter or the increase of the lattice constant.
参考文献

[1] Olmon R L, Krenz P M, Jones A C, et al. Near-field imaging of optical antenna modes in the mid-infrared[J]. Optics Express, 2008, 16(25): 20295-20305.

[2] Alaverdyan Y, Sepúlveda B, Eurenius L, et al. Optical antennas based on coupled nanoholes in thin metal films[J]. Nature Physics, 2007, 3(12): 884-889.

[3] Reichenbach P, Eng L M, Georgi U, et al. 3D-steering and superfocusing of second-harmonic radiation through plasmonic nano antenna arrays[J]. Journal of Laser Applications, 2012, 24: 042005.

[4] Kawata S, Ono A, Verma P. Subwavelength colour imaging with a metallic nanolens[J]. Nature Photonics, 2008, 2(7): 438-442.

[5] Zhou L, Gan Q, Bartoli F J, et al. Direct near-field optical imaging of UV bowtie nanoantennas[J]. Optics Express, 2009, 17(22): 20301-20306.

[6] Greffet J J. Nanoantennas for light emission[J]. Science, 2005, 308(5728): 1561-1563.

[7] Alda J, Rico-García J M, López-Alonso J M, et al. Optical antennas for nano-photonic applications[J]. Nanotechnology, 2005, 16(5): S230.

[8] Maraghechi P, Elezzabi A Y. Experimental confirmation of design techniques for effective bow-tie antenna lengths at THz frequencies[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(7): 897-901.

[9] Schuck P J, Fromm D P, Sundaramurthy A, et al. Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas[J]. Physical Review Letters, 2005, 94(1): 017402.

[10] Dregely D, Taubert R, Dorfmüller J, et al. 3D optical Yagi-Uda nanoantenna array[J]. Nature communications, 2011, 2: 267.

[11] Taminiau T H, Stefani F D, van Hulst N F. Enhanced directional excitation and emission of single emitters by a nano-optical Yagi-Uda antenna[J]. Opt. Express, 2008, 16(14): 10858-6.

[12] Li J, Salandrino A, Engheta N. Optical spectrometer at the nanoscale using optical Yagi-Uda nanoantennas[J]. Physical Review B, 2009, 79(19): 195-104.

[13] Gao H, Shi H, Wang C, et al. Surface plasmon polariton propagation and combination in Y-shaped metallic channels[J]. Optics Express, 2005, 13(26): 10795 10800.

[14] Pavlov R, Curto A G, van Hulst N F. Log-periodic optical antennas with broadband directivity[J]. Optics Communications, 2012.

[15] Liu Y G, Li Y, Sha W E I. Directional far-field response of a spherical nanoantenna[J]. Optics letters, 2011, 36(11): 2146-2148.

[16] Bonod N, Devilez A, Rolly B, et al. Ultracompact and unidirectional metallic antennas[J]. Physical Review B, 2010, 82(11): 115429.

[17] Lereu A L, Sanchez‐Mosteiro G, Ghenuche P, et al. Individual gold dimers investigated by far‐and near‐field imaging[J]. Journal of microscopy, 2008, 229(2): 254-258.

[18] Girard J, Scherrer G, Cattoni A, et al. Far-field optical control of a movable subdiffraction light grid[J]. Physical review letters, 2012, 109(18): 187404.

[19] Wenger J, Gérard D, Dintinger J, et al. Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures[J]. Opt. Express, 2008, 16(5): 3008-3020.

[20] Wang X D, Ye Y H, Ma J, et al. Influence of filling medium of holes on the negative-index response of sandwiched metamaterials[J]. Chinese Physics Letters, 2010, 27(9): 094101.

[21] Hicks E M, Zhang X, Zou S, et al. Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography[J]. The Journal of Physical Chemistry B, 2005, 109(47): 22351-22358.

[22] Pang Y, Genet C, Ebbesen T W. Optical transmission through subwavelength slit apertures in metallic films[J]. Optics Communications, 2007, 280(1): 1015.

[23] Shi X, Hesselink L, Thornton R L. Ultrahigh light transmission through a C-shaped nanoaperture[J]. Optics letters, 2003, 28(15): 1320-1322.

[24] Fan W, Zhang S, Minhas B, et al. Enhanced infrared transmission through subwavelength coaxial metallic arrays[J]. Physical review letters, 2005, 94(3): 033902.

[25] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669.

[26] Xu H, Zhu P, Craighead H G, et al. Resonantly enhanced transmission of light through subwavelength apertures with dielectric filling[J]. Optics Communications, 2009, 282(7): 1467-1471.

[27] Tang Z H, Peng R W, Wang Z, et al. Coupling of surface plasmons in nanostructured metal/dielectric multilayers with subwavelength hole arrays[J]. Physical Review B, 2007, 76(19), 195405.

[28] Guo H, Meyrath T P, Zentgraf T, et al. Optical resonances of bowtie slot antennas and their geometry and material dependence[J]. Optics express, 2008, 16(11): 7756-7766.

[29] Wu Y M, Li L W, Liu B. Gold bow-tie shaped aperture nanoantenna: Wide band near-field resonance and far-field radiation[J]. Magnetics, IEEE Transactions on, 2010, 46(6): 1918-1921.

[30] Turkmen M, Aksu S, etin A E, et al. Multi-resonant metamaterials based on UT-shaped nano-aperture antennas[J]. Optics Express, 2011, 19(8): 7921-7928.

[31] Zhang Z J, Peng R W, Wang Z, et al. Plasmonic antenna array at optical frequency made by nanoapertures[J]. Applied Physics Letters, 2008, 93(17): 1711101-711103.

[32] Wang X, Ye Y H, Zheng C, et al. Tunable figure of merit for a negative-index metamaterial with a sandwich configuration[J]. Optics letters, 2009, 34(22): 3568-3570.

[33] Johnson P B, Christy R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370.

[34] Baida F I, Belkhir A, Van Labeke D, et al. Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes[J]. Physical Review B, 2006, 74(20): 205419.

[35] Degiron A, Lezec H J, Yamamoto N, et al. Optical transmission properties of a single subwavelength aperture in a real metal[J]. Optics Communications, 2004, 239(1): 61-66.

杨理, 王斌, 曹玲玲, 叶永红. 基于中红外波段的等离子体金属孔天线[J]. 红外与毫米波学报, 2014, 33(4): 344. YANG Li, WANG Bin, CAO Ling-Ling, YE Yong-Hong. Plasmon antenna at mid-infrared made by metallic apertures[J]. Journal of Infrared and Millimeter Waves, 2014, 33(4): 344.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!