人工晶体学报, 2020, 49 (10): 1944, 网络出版: 2021-01-09  

废旧锂离子电池三元正极材料的回收与再利用工艺研究进展

Review on Recycling and Utilizing Processes of Ternary Cathode Materials in Spent Lithium-Ion Batteries
作者单位
长江大学化学与环境工程学院,荆州 434023
摘要
锂离子电池因其能量密度高、循环性能好、自放电低等优势在各个领域得到了大量的应用。然而当锂离子电池使用3~5 年后,其容量会随着电解液分解等原因而逐渐衰减,进而无法满足产品需求,势必会产生大量的废旧锂离子电池。因此,将其进行合理的回收利用,不仅可以节约资源,而且还能减轻环境的污染。本文综述了废旧锂离子电池回收的工艺步骤,主要包括三元正极材料的预处理工艺、有价金属离子的浸出与分离工艺、三元正极材料的再合成等工艺,并对比了各种工艺的优缺点。在此基础上,指出废旧锂离子电池三元正极材料的回收与再利用工艺应朝着安全、环保、高效的方向发展。
Abstract
Lithium-ion batteries are widely used in many fields because of the advantages of high energy density, excellent cycling performance, and low self-discharge rate. Nevertheless, the specific capacity of lithium-ion batteries cannot satisfy the practical demands further after being employed for 3 to 5 years due to the decomposition of liquid electrolytes, which can lead to a large number of spent lithium-ion batteries undoubtedly. Therefore, recycling and utilizing of spent lithium-ion batteries reasonably can not only economize the resource, but also alleviate the environmental pollution. This paper summarizes the processing steps of spent lithium-ion batteries during the recycling process, which mainly consists of the pretreatment of ternary cathode materials, the leaching and separation of valuable metal ions and the regeneration of ternary cathode materials as well as comparing the advantages and disadvantages of various methods. On that basis, it is reasonable to move in a safe, environmental and efficient direction to recycle and utilize of ternary cathode materials in spent lithium-ion batteries.
参考文献

[1] Lundblad A, Bergman B. Synthesis of LiCoO2 starting from carbonate precursors I. The reaction mechanisms[J]. Solid State Ionics, 1997, 96(3-4): 173-181.

[2] Li L, Chen R, Sun F, et al. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process[J].Hydrometallurgy, 2011, 108(3-4): 220-225.

[3] 杨 光,张 鹏,钟 岸,等.废旧锂离子动力电池的回收研究进展[J].广东化工,2018,45(5):139-141.

[4] Ota H, Kominato A, Chun W J, et al. Effect of cyclic phosphate additive in non-flammable electrolyte[J]. Journal of Power Sources, 2003, 119: 393-398.

[5] Zeng X, Li J, Liu L. Solving spent lithium-ion battery problems in China:opportunities and challenges[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 1759-1767.

[6] Zou H, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries[J].Green Chemistry, 2013, 15(5): 1183-1191.

[7] 梁新成,张 勉.电动车退役锂电池回收研究[J].电源技术,2020,44(5):771-773.

[8] 朱国才.废旧动力锂离子电池回收再利用产业化进展[J].新材料产业,2018(3):31-33.

[9] 丘克强,吴 倩,湛志华.废弃电路板环氧树脂真空热解及产物分析[J].中南大学学报(自然科学版),2009,40(5):1209-1215.

[10] 谢光炎,凌 云,孙水裕.废旧锂电池电极活性材料真空热解固氟研究[J].环境科学与技术,2012,35(2):56-58.

[11] 揭晓武,王成彦,李敦钫,等.失效锂离子电池材料真空热处理及氨性浸出[J].环境工程学报,2012,6(5):1699-1703.

[12] Ahmed S, Nelson P A, Gallagher K G, et al. Energy impact of cathode drying and solvent recovery during lithium-ion battery manufacturing[J]. Journal of Power Sources, 2016, 322: 169-178.

[13] Xu J, Thomas H R, Francis R W, et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries[J]. Journal of Power Sources, 2008, 177(2): 512-527.

[14] Li L, Dunn J B, Zhang X X, et al. Recovery of metals from spent lithium-ion batteries with organic acids as leaching reagents and environmental assessment[J]. Journal of Power Sources, 2013, 233: 180-189.

[15] Chen X, Zhou T. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media[J]. Waste Management & Research, 2014, 32(11): 1083-1093.

[16] Song D, Wang X, Zhou E, et al. Recovery and heat treatment of the Li (Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery[J]. Journal of Power Sources, 2013, 232: 348-352.

[17] 徐建兵,洪 侃,李忠岐,等.废锂离子动力电池三元正极材料回收研究进展[J].有色金属(冶炼部分),2020,1:66-72.

[18] Lee C K, Rhee K I. Reductive leaching of cathodic active materials from lithium ion battery wastes[J]. Hydrometallurgy, 2003, 68(1-3): 5-10.

[19] Sun L, Qiu K. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2011, 194: 378-384.

[20] 卢毅屏,夏自发,冯其明,等.废锂离子电池中集流体与活性物质的分离[J].中国有色金属学报,2007(6):997-1001.

[21] Gao W, Song J, Cao H, et al. Selective recovery of valuable metals from spent lithium-ion batteries-process development and kinetics evaluation[J]. Journal of Cleaner Production, 2018, 178: 833-845.

[22] Gao W, Zhang X, Zheng X, et al. Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process[J]. Environmental Science & Technology, 2017, 51(3): 1662-1669.

[23] Ferreira D A, Prados L M Z, Majuste D, et al. Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries[J]. Journal of Power Sources, 2009, 187(1): 238-246.

[24] 张永禄,尹 飞,揭晓武,等.碱循环浸出法分离废旧锂离子电池中铝的研究[J].有色金属(冶炼部分),2018,12:22-26.

[25] Wang R C, Lin Y C, Wu S H. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries[J]. Hydrometallurgy, 2009, 99(3-4): 194-201.

[26] Li J, Li X, Hu Q, et al. Study of extraction and purification of Ni, Co and Mn from spent battery material[J]. Hydrometallurgy, 2009, 99(1-2): 7-12.

[27] Lee C K, Rhee K I. Preparation of LiCoO2 from spent lithium-ion batteries[J].Journal of Power Sources, 2002, 109(1): 17-21.

[28] 金玉健.从废弃锂离子电池中回收钴的研究[D].武汉:武汉理工大学,2006:5-6.

[29] Saeki S, Lee J, Zhang Q, et al. Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product[J]. International Journal of Mineral Processing, 2004, 74: S373-S378.

[30] Li L, Bian Y, Zhang X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching[J]. Waste Management, 2018, 71: 362-371.

[31] Li L, Fan E, Guan Y, et al. Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 5224-5233.

[32] Sun L, Qiu K. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries[J]. Waste Management, 2012, 32(8): 1575-1582.

[33] 刘银玲,赵璐璐,郭琳娜,等.维生素C溶解废旧锂离子电池正极材料锰酸锂的研究[J].南阳师范学院学报,2015,14(9):27-31.

[34] Zheng X, Gao W, Zhang X, et al. Spent lithium-ion battery recycling-reductive ammonia leaching of metals from cathode scrap by sodium sulphite[J]. Waste Management, 2017, 60: 680-688.

[35] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching[J]. Journal of Hazardous Materials, 2016, 313: 138-146.

[36] Bahaloo-Horeh N, Mousavi S M. Enhanced recovery of valuable metals from spent lithium-ion batteries through optimization of organic acids produced by aspergillus niger[J]. Waste Management, 2017, 60: 666-679.

[37] Zeng G, Deng X, Luo S, et al. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries[J]. Journal of Hazardous Materials, 2012, 199: 164-169.

[38] Jha A K, Jha M K, Kumari A, et al. Selective separation and recovery of cobalt from leach liquor of discarded Li-ion batteries using thiophosphinic extractant[J]. Separation and Purification Technology, 2013, 104: 160-166.

[39] Nayl A A, Hamed M M, Rizk S E. Selective extraction and separation of metal values from leach liquor of mixed spent Li-ion batteries[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 55: 119-125.

[40] Freitas M, Garcia E M. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries[J]. Journal of Power Sources, 2007, 171(2): 953-959.

[41] Lupi C, Pasquali M. Electrolytic nickel recovery from lithium-ion batteries[J].Minerals Engineering, 2003, 16(6): 537-542.

[42] 王 斌,梁精龙,李 慧,等.废旧锂离子电池金属离子回收技术综述[J].电源技术,2019,43(1):165-167.

[43] 冯 佳,章 骅,邵立明,等.废旧锂离子电池中钴的离子交换法回收[J].环境卫生工程,2008,16(6):1-3.

[44] 王晓峰,孔祥华,赵增营.锂离子电池中贵重金属的回收[J].电池,2001(1):14-15.

[45] 金玉健,梅光军,李树元.盐析法从锂离子电池正极浸出液中回收钴盐的研究[J].环境科学学报,2006(7):1122-1125.

[46] 史红彩.废旧锂离子动力电池中镍钴锰酸锂正极材料的回收及再利用[D].郑州:郑州大学,2017.

[47] 李长东,余海军,陈清后.从废旧锂电池中回收制备三元正极材料的研究[J].资源再生,2011(8):62-65.

[48] 梅 铭,向黔新,祝巧凤,等.补锂回收正极材料LiNi0.5Co0.2Mn0.3O2[J].电池,2019,49(1):86-88.

[49] Kim D S, Sohn J S, Lee C K, et al. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries[J]. Journal of Power Sources, 2004, 132(1-2): 145-149.

[50] Sa Q, Gratz E, He M, et al. Synthesis of high performance LiNi1/3Mn1/3Co1/3O2 from lithium ion battery recovery stream[J]. Journal of Power Sources, 2015, 282: 140-145.

[51] He L P, Sun S Y, Yu J G. Performance of LiNi1/3Co1/3Mn1/3O2 prepared from spent lithium-ion batteries by a carbonate co-precipitation method[J]. Ceramics International, 2018, 44(1): 351-357.

[52] Yao L, Feng Y, Xi G. A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries[J]. RSC Advances, 2015, 5(55): 44107-44114.

[53] Li L, Bian Y, Zhang X, et al. Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study[J]. Journal of Power Sources, 2018, 377: 70-79.

谭燚, 缪畅, 聂炎, 肖围. 废旧锂离子电池三元正极材料的回收与再利用工艺研究进展[J]. 人工晶体学报, 2020, 49(10): 1944. TAN Yi, MIAO Chang, NIE Yan, XIAO Wei. Review on Recycling and Utilizing Processes of Ternary Cathode Materials in Spent Lithium-Ion Batteries[J]. Journal of Synthetic Crystals, 2020, 49(10): 1944.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!