Photonics Research, 2019, 7 (9): 09000948, Published Online: Aug. 2, 2019  

Large-signal SPICE model for depletion-type silicon ring modulators Download: 740次

Author Affiliations
1 Department of Electrical and Electronic Engineering, Yonsei University, 03722 Seoul, South Korea
2 Now at University of Michigan, Ann Arbor, 48109 Michigan, USA
3 Now at Samsung Electronics, Hwasung, 18448 Gyeonggi-do, South Korea
4 Now at IMEC, Kapeldreef 75, 3001 Leuven, Belgium
5 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
Copy Citation Text

Minkyu Kim, Myungjin Shin, Min-Hyeong Kim, Byung-Min Yu, Younghyun Kim, Yoojin Ban, Stefan Lischke, Christian Mai, Lars Zimmermann, Woo-Young Choi. Large-signal SPICE model for depletion-type silicon ring modulators[J]. Photonics Research, 2019, 7(9): 09000948.

References

[1] G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, J. E. Cunningham. Ring resonator modulators in silicon for interchip photonic links. IEEE J. Sel. Top. Quantum Electron., 2013, 19: 95-113.

[2] B. M. M. Milosevic, S. Stankovic, S. Reynolds, T. D. Bucio, K. Li, D. J. Thomson, F. Gardes, G. T. Reed. The emergence of silicon photonics as a flexible technology platform. Proc. IEEE, 2018, 106: 2101-2116.

[3] J. Sun, R. Kumar, M. Sakib, J. B. Driscoll, H. Jayatilleka, H. Rong. A 128 Gb/s PAM-4 silicon microring modulator with integrated thermo-optic resonance tuning. J. Lightwave Technol., 2019, 37: 110-115.

[4] Y. Kim, Y. Jo, M. Kim, B.-M. Yu, C. Mai, S. Lischke, L. Zimmermann, W.-Y. Choi. Parametric optimization of depletion-type Si micro-ring modulator performances. Jpn. J. Appl. Phys., 2019, 58: 062006.

[5] A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T. Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V. Baiocco, M. A. Popović, V. M. Stojanović, R. J. Ram. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip. Nature, 2018, 556: 349-354.

[6] R. Dube-Demers, J. St-Yves, A. Bois, Q. Zhong, M. Caverley, Y. Wang, L. Chrostowski, S. LaRochelle, D. V. Plant, W. Shi. Analytical modeling of silicon microring and microdisk modulators with electrical and optical dynamics. J. Lightwave Technol., 2015, 33: 4240-4252.

[7] J. Rhim, Y. Ban, B.-M. Yu, J.-M. Lee, W.-Y. Choi. Verilog-A behavioral model for resonance-modulated silicon micro-ring modulator. Opt. Express, 2015, 23: 8762-8772.

[8] M. Shin, Y. Ban, B. M. Yu, M. H. Kim, J. Rhim, L. Zimmermann, W. Y. Choi. A linear equivalent circuit model for depletion-type silicon microring modulators. IEEE Trans. Electron Devices, 2017, 64: 1140-1145.

[9] KimM.ShinM.KimM.-H.YuB.-M.MaiC.LischkeS.ZimmermannL.ChoiW.-Y., “A large-signal equivalent circuit for depletion-type silicon ring modulators,” in Optical Fiber Communication Conference (OSA, 2018), paper Th2A.13.

[10] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.-P. Laine. Microring resonator channel dropping filters. J. Lightwave Technol., 1997, 15: 998-1005.

[11] BanY.LeeJ. M.YuB. M.ChoS. H.ChoiW. Y., “Small-signal frequency responses for Si micro-ring modulators,” in IEEE Optical Interconnects Conference (OI’14) (2014), pp. 4748.

[12] Optilab PR-23-M, 23  GHz Linear Photoreceiver Module, 2018, .

[13] D. Knoll, S. Lischke, A. Awny, L. Zimmermann. SiGe BiCMOS for optoelectronics. ECS Trans., 2016, 75: 121-139.

[14] IEEE P802.3 bs 200  Gb/s and 400  Gb/s Ethernet Task Force..

[15] OIF CEI-56G Application Note..

[16] Roshan-ZamirA.WangB.TelaproluS.YuK.LiC.SeyediM. A.FiorentinoM.BeausoleilR.PalermoS., “A 40  Gb/s PAM-4 silicon microring resonator modulator transmitter in 65  nm CMOS,” in IEEE Optical Interconnects Conference (OI) (2016), pp. 89.

[17] R. Li, D. Patel, A. Samani, E. El-Fiky, Z. Xing, M. Morsy-Osman, D. V. Plant. Silicon photonic ring-assisted MZI for 50  Gb/s DAC-less and DSP-free PAM-4 transmission. IEEE Photon. Technol. Lett., 2017, 29: 1046-1049.

[18] R. Li, D. Patel, E. El-Fiky, A. Samani, Z. Xing, M. Morsy-Osman, D. V. Plant. High-speed low-chirp PAM-4 transmission based on push-pull silicon photonic microring modulators. Opt. Express, 2017, 25: 13222-13229.

[19] S. Moazeni, S. Lin, M. Wade, L. Alloatti, R. J. Ram, M. Popovic, V. Stojanovic. A 40-Gb/s PAM-4 transmitter based on a ring-resonator optical DAC in 45-nm SOI CMOS. IEEE J. Solid-State Circuits, 2017, 52: 3503-3516.

[20] LiH.BalamuruganG.SakibM.SunJ.DriscollJ.KumarR.JayatillekaH.RongH.JaussiJ.CasperB., “A 112  Gb/s PAM-4 transmitter with silicon photonics microring modulator and CMOS driver,” in Optical Fiber Communication Conference (OSA, 2019), paper Th4A.4.

[21] T. Kishi, M. Nagatani, S. Kanazawa, W. Kobayashi, H. Yamazaki, M. Ida, K. Kurishima, M. Nogawa, S. Kimura, H. Nosaka. 56  Gb/s optical transmission performance of an InP HBT PAM-4 driver compensating for nonlinearity of extinction curve of EAM. J. Lightwave Technol., 2017, 35: 75-81.

Minkyu Kim, Myungjin Shin, Min-Hyeong Kim, Byung-Min Yu, Younghyun Kim, Yoojin Ban, Stefan Lischke, Christian Mai, Lars Zimmermann, Woo-Young Choi. Large-signal SPICE model for depletion-type silicon ring modulators[J]. Photonics Research, 2019, 7(9): 09000948.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!