红外与激光工程, 2018, 47 (11): 1121005, 网络出版: 2019-01-10  

不同尺寸、形状和组成的金纳米颗粒的光热特性: 在癌症治疗中的应用

Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy
作者单位
1 武汉第二船舶设计研究所, 湖北 武汉 430205
2 西安交通大学 热流科学与工程教育部重点实验室, 陕西 西安 710049
摘要
光热疗法由于其安全和高效的优点, 作为一种非破坏性方法在癌症治疗中有广泛的应用前景。光热疗法中, 所采用的纳米颗粒在近红外波段的光热转换效率取决于纳米颗粒的光谱吸收特性。采用时域有限差分法对球型、壳型、杆型、片型、笼型、星型和花型等七种不同金纳米颗粒的光谱吸收特性进行了仿真计算, 结果表明纳米颗粒的几何参数和结构对其光谱吸收效率和共振波长产生了显著的影响。通过对比七种金纳米颗粒的体积吸收系数, 发现金纳米片在近红外波段的光热转换效率优于其他六种金纳米颗粒。从电流密度矢量分布得出, 金纳米颗粒内部产生共振电流是导致金纳米颗粒在近红外波段具有明显的单色吸收特性的原因。
Abstract
Due to its safety and high efficiency, photothermal therapy has been actively explored as minimally invasive approach to cancer therapy. The selection of nanoparticles to achieve photo thermal conversion efficiently is based on the absorption properties of the nanoparticles. Finite difference time domain method(FDTD) was used to calculate spectral absorption efficiencies for seven common types of gold nanoparticles: nanospheres, nanoshells, nanorods, nanosheets, nanocages, nanostars, and nanoflowers. The calculated results clearly demonstrate the dependence of absorption efficiencies and resonance wavelengths on the geometrical parameters of the nanoparticles. Via the volume absorption efficiencies, photothermal performance of the seven types of gold nanoparticles is compared quantitatively. The gold nanosheets are proved to offer the most superior photothermal performance in the near-infrared region (NIR) among the seven types of nanoparticles. From the vector distributions of the electric current densities, it is clearly shown that the resonant electric currents in the gold nanoparticles play the major role on the ultra large absorption cross-section in the NIR.
参考文献

[1] Ferrari M. Cancer nanotechnology: opportunities and challenges [J]. Nat Rev Cancer, 2005, 5 (3): 161-171.

[2] Cheng L, Wang C, Feng L, et al. Functional nanomaterials for phototherapies of cancer[J]. Chemical Reviews, 2014, 114 (21): 10869-10939.

[3] Pitsillides C M, Joe E K, Wei X, et al. Selective cell targeting with light-absorbing microparticles and nanoparticles [J]. Biophysical Journal, 2003, 84 (6): 4023-4032.

[4] Ritz J P, Roggan A, Isbert C, et al. Optical properties of native and coagulated porcine liver tissue between 400 and 2 400 nm[J]. Lasers in Surgery and Medicine, 2001, 29(3): 205-212.

[5] Jain P K, El-Sayed I H, El-Sayed M A. Au nanoparticles target cancer [J]. Nano Today, 2007, 2(1): 18-29.

[6] Boris K, Vladimir Z, Andrei M, et al. Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters [J]. Nanotechnology, 2006, 17 (20): 5167.

[7] Li Z, Huang H, Tang S, et al. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy [J]. Biomaterials, 2016, 74: 144-154.

[8] Wang Y, Black K C L, Luehmann H, et al. Comparison Study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment [J]. ACS Nano, 2013, 7(3): 2068-2077.

[9] Huang X, El-Sayed I H, Qian W, et al. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods [J]. Journal of the American Chemical Society, 2006, 128(6): 2115-2120.

[10] Yavuz M S, Cheng Y, Chen J, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light [J]. Nat Mater, 2009, 8(12): 935-939.

[11] Kam N W S, O′Connell M, Wisdom J A, et al. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(33): 11600-11605.

[12] Hessel C M, Pattani V P, Rasch M, et al. Copper selenide nanocrystals for photothermal therapy [J]. Nano Letters, 2011, 11(6): 2560-2566.

[13] Ni D, Ding H, Liu S, et al. Drug delivery: superior intratumoral penetration of paclitaxel nanodots strengthens tumor restriction and metastasis prevention [J]. Small, 2015, 11(21): 2465-2465.

[14] Tian B, Wang C, Zhang S, et al. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide [J]. ACS Nano, 2011, 5(9): 7000-7009.

[15] Hirsch L R, Stafford R J, Bankson J A, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proceedings of the National Academy of Sciences, 2003, 100(23): 13549-13554.

[16] Loo C, Lin A, Hirsch L, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer [J]. Technology in Cancer Research & Treatment, 2004, 3(1): 33-40.

[17] Kim J, Park S, Lee J E, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy [J]. Angewandte Chemie International Edition, 2006, 45(46): 7754-7758.

[18] Madsen S J, Baek S -K, Makkouk A R, et al. Macrophages as cell-based delivery systems for nanoshells in photothermal therapy [J]. Annals of Biomedical Engineering, 2011, 40(2): 507-515.

[19] Dickerson E B, Dreaden E C, Huang X H, et al. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice[J]. Cancer Letters, 2008, 269(1): 57-66.

[20] Huang X, Neretina S, El-Sayed M A. Gold nanorods: from synthesis and properties to biological and biomedical applications [J]. Advanced Materials, 2009, 21(48): 4880-4910.

[21] Maltzahn G, Park J -H, Agrawal A, et al. Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas [J]. Cancer Research, 2009, 69(9): 3892-3900.

[22] Huang X, Tang S, Mu X, et al. Freestanding palladium nanosheets with plasmonic and catalytic properties [J]. Nat Nano, 2011, 6(1): 28-32.

[23] Pelaz B, Grazu V, Ibarra A, et al. Tailoring the synthesis and heating ability of gold nanoprisms for bioapplications [J]. Langmuir, 2012, 28 (24): 8965-8970.

[24] Skrabalak S E, Chen J, Sun Y, et al. Gold nanocages: synthesis, properties, and applications [J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.

[25] Xia Y, Li W, Cobley C M, et al. Gold nanocages: from synthesis to theranostic applications [J]. Accounts of Chemical Research, 2011, 44(10): 914-924.

[26] Tian Q W, Tang M H, Sun Y G, et al. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells[J]. Advanced Materials, 2011, 23(31): 3542-3547.

[27] Julien R G N, Delphine M, Frédéric L, et al. Synthesis of PEGylated gold nanostars and bipyramids for intracellular uptake[J]. Nanotechnology, 2012, 23 (46): 465602.

[28] Yuan H, Fales A M, Vo-Dinh T. TAT peptide-functionalized gold nanostars: enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance [J]. Journal of the American Chemical Society, 2012, 134(28): 11358-11361.

[29] Yuan H, Khoury C G, Wilson C M, et al. In vivo particle tracking and photothermal ablation using plasmon-resonant gold nanostars[J]. Nanomedicine: Nanotechnology, Biology and Medicine, 2012, 8(8): 1355-1363.

[30] Jain P K, Lee K S, El-Sayed I H, et al. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7238-7248.

[31] Huang X, El-Sayed M A. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy[J]. Journal of Advanced Research, 2010, 1(1): 13-28.

谷伟, 张锦岚, 彭亮, 曹为午, 邓海华, 陶文铨. 不同尺寸、形状和组成的金纳米颗粒的光热特性: 在癌症治疗中的应用[J]. 红外与激光工程, 2018, 47(11): 1121005. Gu Wei, Zhang Jinlan, Peng Liang, Cao Weiwu, Deng Haihua, Tao Wenquan. Photothermal characteristics of gold nanoparticles of different size, shape, and composition: application in photothermal therapy[J]. Infrared and Laser Engineering, 2018, 47(11): 1121005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!