中国激光, 2011, 38 (4): 0404002, 网络出版: 2011-03-30   

酵母细胞在涡旋光阱中的旋转动力学研究

Rotation Dynamics of Yeast Cell in Vortex Optical Tweezers
作者单位
1 中国科学技术大学光学与光学工程系, 安徽 合肥 230026
2 合肥微尺度物质科学国家实验室, 安徽 合肥 230026
3 安徽省光电子科学与技术重点实验室, 安徽 合肥 230026
摘要
利用液晶空间光调制器对高斯光束进行相位调制后可生成涡旋光束。因涡旋光束本身具有轨道角动量,酵母细胞被光阱捕获后会绕其中心旋转,对酵母细胞旋转的时序信号图进行傅里叶变换后可测出酵母细胞在光阱中的旋转角速度。详细讨论了酵母细胞旋转角速度随激光功率、拓扑荷以及捕获高度的变化关系。实验结果表明,酵母细胞的旋转角速度与激光功率成正比,与拓扑荷的平方成反比;捕获高度在14 μm时角速度达到最大值;细胞在涡旋光阱中的旋转方向可由拓扑荷的符号决定,正号为逆时针旋转,负号为顺时针旋转。此实验结果有望应用在细菌鞭毛马达力矩的测量实验中。
Abstract
Vortex optical trap is generated by projecting computer-generated phase patterns to liquid crystal spatial light modulator. Because vortex beam itself owns orbital angular momentum, it can be utilized to trap and rotate yeast cell. The angular rotation rate of yeast cell is measured by Fourier transforming of rotation time-sequencial signal. Besides, how laser power, topological charge and height of the vortex trap from bottom affect the angular rate of rotation is discussed in detail. The experimental results indicate that the rotation rate is proportional to laser power, but inversely proportional to the square of the topological charge. The rotation rate reaches maximum when the height of trap is about 14 μm. The sign of topological charge determines the direction of rotation of yeast cell. When the sign of topological charge is positive, the yeast cell rotates counter-clockwise, and it rotates clockwise when the sign is negative. The results may find their potential applications in the measurement of the torque of bacterial flagella motor.
参考文献

[1] . Schaal, M. Warber, S. Zwick et al.. Marker-free cell discrimination by holographic optical tweezers[J]. Journal of the European Optical Society-Rapid Publications, 2009, 4: 09028.

[2] . G. Wu, Y. M. Li, D. Lu et al.. Probing membrane elasticity of red blood cell with osmotic pressures using single optical tweezers[J]. Cryo. Lett., 2009, 30(2): 89-95.

[3] . Zhang, N. Chen, A. El. Haj et al.. An optical-manipulation technique for cells in physiological flows[J]. Journal of Biological Physics, 2010, 36(2): 135-143.

[4] . Leach, D. Howard, S. Roberts et al.. Manipulation of live mouse embryonic stem cells using holographic optical tweezers[J]. J. Mod. Opt., 2009, 56(4): 448-452.

[5] . Deufel, S. Forth, C. R. Simmons et al.. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection[J]. Nat. Meth., 2007, 4(3): 223-225.

[6] . M. Block, D. F. Blair, H. C. Berg. Compliance of bacterial flagella measured with optical tweezers[J]. Nature, 1989, 338(6215): 514-518.

[7] J. R. Moffitt, Y. R. Chemla, C. Bustamante. Methods in Statistical Kinetics. In: Nils GW, ed. Methods in Enzymology[M]. Amsterdam: Academic Press, 2010. 221~257

[8] 吴建光, 任煜轩, 王自强 等. 旋转玻片法实现分时复用多光阱[J]. 中国激光, 2009, 36(10): 2751~2756

    Wu Jianguang, Ren Yuxuan, Wang Ziqiang et al.. Time-sharing multiple optical traps using rotating glass plate[J]. Chinese J. Lasers, 2009, 36(10): 2751~2756

[9] . K. Mohanty, A. Uppal, P. K. Gupta. Self-rotation of red blood cells in optical tweezers: prospects for high throughput malaria diagnosis[J]. Biotechnology Letters, 2004, 26(12): 971-974.

[10] . E. J. Friese, T. A. Nieminen, N. R. Heckenberg et al.. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 1998, 394(6691): 348-350.

[11] B. Gutiérrez-Medina, J. O. L. Andreasson, W. J. Greenleaf et al.. Methods in Enzymology[M]. Amsterdam: Academic Press, 2010. 377~404

[12] . He, M. E. J. Friese, N. R. Heckenberg et al.. Direct observation of transfer of angular momentum to absorptive particales from a laser beam with a phase singularity[J]. Phys. Rev. Lett., 1995, 75(5): 826-829.

[13] 任煜轩, 周金华, 吴建光 等. 全息光镊光镊家族中极具活力的成员[J]. 激光与光电子学进展, 2008, 45(11): 35~41

    Ren Yuxuan, Zhou Jinhua, Wu Jianguang et al.. Holographic tweezers-the most vigorous member in optical tweezers family[J]. Laser & Optoelectronics Progress, 2008, 45(11): 35~41

[14] J. Courtial, K. Dholakia, L. Allen et al.. Gaussian beams with very high orbital angular momentum[J]. Opt. Commun., 1997, 144(4-6): 210~213

[15] . X. Ren, M. Li, K. Huang et al.. Experimental generation of Laguerre-Gaussian beam using digital micromirror device[J]. Appl. Opt., 2010, 49(10): 1838-1844.

[16] 韩超, 韦穗, 权希龙 等. 数字微镜器件的全息显示[J]. 中国激光, 2010, 37(1): 190~194

    Han Chao, Wei Sui, Quan Xilong et al.. Holographic display of digital micromirror device[J]. Chinese J. Lasers, 2010, 37(1): 190~194

[17] . C. Yuan, J. Lin, J. Bu et al.. Achromatic design for the generation of optical vortices based on radial spiral phase plates[J]. Opt. Express, 2008, 16(18): 13599-13605.

[18] . 相位片角向衍射产生拉盖尔高斯光束的实验研究[J]. 物理学报, 2010, 59(6): 3930-3935.

    Ren Yuxuan, Wu Jianguang, Zhou Xiaowei et al.. Experimental generation of Laguerre-Gaussian beam using angular diffraction of binary phase plate[J]. Acta Phisica Sinica 2010, 59(6): 3930~3935

[19] 王涛, 蒲继雄. 涡旋光束单缝衍射的理论和实验研究[J]. 中国激光, 2009, 36(11): 2902~2907

    Wang Tao, Pu Jixiong. Theoretical and experimental study on vortex beam transmitted through a single-slit[J]. Chinese J. Lasers, 2009, 36(11): 2902~2907

[20] . Allen, M. W. Beijersbergen, R. J. C. Spreeuw et al.. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Phys. Rev. A., 1992, 45(11): 8185-8189.

[21] 孙晴, 任煜轩, 姚焜 等. 阵列光镊衍射元件的算法设计[J]. 中国激光, 2011, 38(1): 0109003

    Sun Qing, Ren Yuxuan, Yao Kun et al.. Algorithm for diffractive optical element of array optical tweezers[J]. Chinese J. Lasers, 2011, 38(1): 0109003

[22] . X. Ren, J. G. Wu, M. Chen et al.. Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate[J]. Chinese Physics Letters, 2010, 27(2): 028703.

[23] . Li, J. X. Tang. Low flagellar motor torque and high swimming efficiency of caulobacter crescentus swarmer cells[J]. Biophysical Journal, 2006, 91(7): 2726-2734.

[24] . Lowe, M. Meister, H. C. Berg. Rapid rotation of flagellar bundles in swimming bacteria[J]. Nature, 1987, 325(6105): 637-640.

[25] R. M. Berry, H. C. Berg. Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers[C]. Proceedings of the National Academy of Sciences of America, 1997, 94(26): 14433~14437

[26] . C. Berg. The rotary motor of bacterial flagella[J]. Annual Review of Biochemistry, 2003, 72(1): 19-54.

[27] . E. Curtis, D. G. Grier. Structure of optical vortices[J]. Phys. Rev. Lett., 2003, 90(13): 133901.

[28] . Lin, J. Yu, S. A. Rice. Direct measurements of constrained Brownian motion of an isolated sphere between two walls[J]. Phys. Rev. E., 2000, 62: 3909.

[29] Yuxuan Ren, Jianguang Wu, Mincheng Zhong et al.. Monte-Carlo simulation of effective stiffness of time-sharing optical tweezers[J]. Chin. Opt. Lett., 2010, 8(2): 170~172

[30] S. Mordechai. Applications of Monte Carlo Method in Science and Engineering[M]// Y.-X. Ren, J.-G. Wu, Y.-M. Li. Application of Monte Carlo simulation on optical tweezers. Rijeka: In Tech, 2011

[31] . Wen, G. Li, J. Tang et al.. Switching statistics of a flagellar motor: first-passage time and dynamic binding[J]. Journal of Statistical Physics, 2007, 128(1): 257-267.

[32] J. Yuan, K. A. Fahrner, L. Turner et al.. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor[C]. Proceedings of the National Academy of Sciences of America, 2010, 107(29): 12846~12849

高红芳, 任煜轩, 刘伟伟, 李银妹. 酵母细胞在涡旋光阱中的旋转动力学研究[J]. 中国激光, 2011, 38(4): 0404002. Gao Hongfang, Ren Yuxuan, Liu Weiwei, Li Yinmei. Rotation Dynamics of Yeast Cell in Vortex Optical Tweezers[J]. Chinese Journal of Lasers, 2011, 38(4): 0404002.

本文已被 8 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!