红外与激光工程, 2018, 47 (9): 0918008, 网络出版: 2018-10-06   

多通螺旋相位板的涡旋光拓扑荷数4重加倍

Quadrupling topological charges of vortex using multi-passed spiral phase plate
作者单位
中国人民解放军战略支援部队航天工程大学 宇航科学与技术系, 北京 101416
摘要
为了制备大拓扑荷数涡旋光, 对基于螺旋相位板多通的拓扑荷数4重加倍进行了理论分析、仿真模拟和实验验证。根据菲涅耳衍射积分定理, 推导了基于螺旋相位板多通的涡旋光拓扑荷数加倍原理。设计了4重加倍装置, 建立了相应模型并模拟了拓扑荷数4重加倍后的涡旋光强分布。绘制了相对强度、光束半径随距离变化曲线, 得到了加倍过程中半径和强度不会发生突变的结论。最后, 使用该装置成功制备了拓扑荷数为4、8、12、16的涡旋光束并对该实验中高阶涡旋光质量较差的原因进行了分析。
Abstract
In order to generate optical vortex with high topological charges, theoretical analysis, simulations and experimental demonstration of quadrupling topological charges of vortex based on spiral phase plate were presented. According to Fresnel diffraction integral, theory of quadrupling topological charges was analyzed. Setup of quadrupling topological charges based on one spiral phase plate was designed, then mathematical model was built and relative intensity of vortex after quadrupling was simulated. Simulated graphs of relative intensity and optical radius were plotted, the radius and intensity were smoothly changed during the quadrupling. Finally, vortices with topological charges 4, 8, 12, 16 were generated and the reason why vortices with high topological charges generated by quadrupling were of poor quality was analyzed.
参考文献

[1] 高春清, 张世坤, 付时尧, 等. 涡旋光束的自适应光学波前校正技术[J]. 红外与激光工程, 2017, 46(2): 0201001.

    Gao Chunqing, Zhang Shikun, Fu Shiyao, et al. Adaptive optics wavefront correction techniques of vortex beams[J]. Infrared and Laser Engineering, 2017, 46(2): 0201001. (in Chinese)

[2] 王琛, 刘通, 邵琼玲, 等. 基于Sagnac干涉仪的涡旋光制备方法[J]. 光子学报, 2018, 47(3): 0326002.

    Wang Chen, Liu Tong, Shao Qiongling, et al. Method research of optical vortex generation based on sagnac interferometer[J]. Acta Photonica Sinica, 2018, 47(3):0326002. (in Chinese)

[3] 张光宇, 刘琳婧, 张成龙. 基于拉盖尔-高斯光束的单光子捕获概率研究[J]. 光子学报, 2017, 46(1): 0101001.

    Zhang Guangyu, Liu Linjing, Zhang Chenglong. Study on single-photon acquisition probability based on laguerre-gaussian beams[J]. Acta Photonica Sinica, 2017, 46(1): 0101001. (in Chinese)

[4] 黄素娟, 张杰, 邵蔚, 等. 高质量光学涡旋阵列的实验研究[J]. 光子学报, 2017, 46(8): 0826002.

    Huang Sujuan, Zhang Jie, Shao Wei, et al. Experimental study on optical vortex array with high quality[J]. Acta Photonica Sinica, 2017, 46(8): 0826002. (in Chinese)

[5] 孙海滨, 孙平. 基于光学涡旋相移技术的离面位移测量[J]. 光子学报, 2016, 45(11): 1112001.

    Sun Haibin, Sun Ping. Out-of-plane displacement measurement using optical vortex phase shifting[J]. Acta Photonica Sinica, 2016, 45(11): 1112001. (in Chinese)

[6] Zhou Z Y, Li Y, Ding D S, et al. Optical vortex beam based optical fan for high-precision optical measurements and optical switching[J]. Optics Letters, 2014, 39(17): 5098.

[7] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5): 321-327.

[8] Turnbull G A, Robertson D A, Smith G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(S4-6): 183-188.

[9] 辛璟焘, 李凯, 张雯, 等. 采用萨格纳克干涉仪与螺旋相位片生成矢量光束[J]. 红外与激光工程, 2017, 46(2): 0217001.

    Xin Jingtao, Li Kai, Zhang Wen, et al. Generation of vector beams by Sagnac interferometer and spiral phase plates[J]. Infrared and Laser Engineering, 2017, 46(2): 0217001. (in Chinese)

[10] Zheng C, Zang H, Du Y, et al. Realization of arbitrarily long focus-depth optical vortices with spiral area-varying zone plates[J]. Optics Communications, 2018, 414: 128-133.

[11] 范长江, 徐建程, 任志君, 等. 激光直写制作高阶螺旋相位板及其性能[J]. 强激光与粒子束, 2011, 23(12): 3283-3286.

    Fan Changjiang, Xu Jiancheng, Ren Zhijun, et al. Performance of high-order spiral phase plate made by direct laser writing lithography[J]. High Power Laser & Particle Beams, 2011, 23(12): 3283-3286. (in Chinese)

[12] Cao A, Shi L, Deng Q, et al. One exposure processing to fabricate spiral phase plate with continuous surface[J]. Optics Express, 2015, 23(7): 8620-8629.

[13] Chen Y, Zheng S, Li Y, et al. A flat-lensed spiral phase plate based on phase-shifting surface for generation of millimeter-wave OAM beam[J]. IEEE Antennas & Wireless Propagation Letters, 2016, 15: 1156-1158.

[14] Bozinovic N, Yue Y, Ren Y, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548.

[15] Molina-Terriza G, Torres J P, Torner L. Twisted photons[J]. Nature Physics, 2007, 3(5): 305-310.

[16]

    Yang C H, Chen Y D, Wu S T, et al. Independent manipulation of topological charges and polarization patterns of optical vortices[J]. Scientific Reports, 2016, 6: 31546.

[17] Lamstein J, Bezryadina A, Preece D, et al. Optical tug-of-war tweezers: shaping light for dynamic control of bacterial cells(Invited Paper)[J]. Chinese Optics Letters, 2017, 15(3):113.

[18] Li X, Tai Y, Zhang L, et al. Characterization of dynamic random process using optical vortex metrology[J]. Applied Physics B, 2014, 116(4): 901-909.

[19] Chmyrov A, Keller J, Grotjohann T, et al. Nanoscopy with more than 100,000 'doughnuts'[J]. Nature Methods, 2013, 10(8): 737-740.

[20] Aleksanyan A, Kravets N, Brasselet E. Multiple-star system adaptive vortex coronagraphy using a liquid crystal light valve[J]. Physical Review Letters, 2017, 118(20): 203902.

[21] Panthong P, Srisuphaphon S, Chiangga S, et al. High-contrast optical vortex detection using the Talbot effect[J]. Applied Optics, 2018, 57(7):1657.

[22] Gbur G. Singular Optics[M]. Boca Raton: CRC Press, 2017.

王琛, 刘通, 邵琼玲, 任元, 苗继松. 多通螺旋相位板的涡旋光拓扑荷数4重加倍[J]. 红外与激光工程, 2018, 47(9): 0918008. Wang Chen, Liu Tong, Shao Qiongling, Ren Yuan, Miao Jisong. Quadrupling topological charges of vortex using multi-passed spiral phase plate[J]. Infrared and Laser Engineering, 2018, 47(9): 0918008.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!